Matematică, întrebare adresată de Truvaiilx, 8 ani în urmă

Buna!Va rog face ti acest exercitiu URGENT!!DAU COROANA,INIMA,SI O SA VA SI URMARESC​

Anexe:

Răspunsuri la întrebare

Răspuns de tcostel
0

\displaystyle\bf\\x=8^{33}:\left[4^{32}\cdot2^{34}+\Big(2^5\cdot2^{20}\Big)^5:\Big(16\cdot2^{23}\Big)+\Big(7^5:7^5-1\Big)^{32}\cdot4\right]=\\\\\\=8^{33}:\left[4^{32}\cdot2^{34}+2^{(5+20)\cdot5}:\Big(2^4\cdot2^{23}\Big)+\Big(1-1\Big)^{32}\cdot4\right]=\\\\\\=8^{33}:\left[4^{32}\cdot2^{34}+2^{(5+20)\cdot5}:2^{4+23}+\Big(0\Big)^{32}\cdot4\right]=  

.

\displaystyle\bf\\=8^{33}:\Big[4^{32}\cdot2^{34}+2^{(125)}:2^{4+23}+0\cdot4\Big]=\\\\\\=8^{33}:\Big[4^{32}\cdot2^{34}+2^{125}:2^{27}+0\Big]=\\\\\\=\Big(2^3\Big)^{33}:\Bigg[\Big(2^2\Big)^{32}\cdot2^{34}+2^{125-27}}\Bigg]=\\\\\\=2^{3\cdot33}:\Big[2^{2\cdot32+34}+2^{125-27}}\Big]=\\\\\\=2^{99}:\Big[2^{64+34}+2^{98}}\Big]=\\\\\\=2^{99}:\Big[2^{98}+2^{98}}\Big]=\\\\\\=2^{99}:\Big[2\cdot2^{98}}\Big]=\\\\\\=2^{99}:2^{99}}=1\\\\\\\boxed{\bf x=1}

.

\displaystyle\bf\\y=\Big[(11-0^{11})\cdot(3^3-3^2)+1^{2020}\Big]\cdot(3^2-2^3)-3^2\cdot2=\\\\\\=\Big[(11-0)\cdot(27-9)+1}\Big]\cdot(9-8)-9\cdot2=\\\\\\=\Big[11\cdot18+1\Big]\cdot1-18=\\\\\\=\Big[198+1\Big]\cdot1-18=\\\\\\=199\cdot1-18=199-18=181\\\\\\\boxed{\bf y=181}

 

 

Alte întrebări interesante