Matematică, întrebare adresată de Florentiinaa, 8 ani în urmă

Calculați...................

Anexe:

Răspunsuri la întrebare

Răspuns de 19999991
2
12) {3}^{x} \times {5}^{x} = 15

 {3}^{x} \times {5}^{x} = {3}^{1} \times {5}^{1} = > x = 1

13) \sqrt{x - 1} = \sqrt{ {x}^{2} - x - 2} \: | {( \: )}^{2}

x - 1 \geqslant 0

 {x}^{2} - x - 2 \geqslant 0

x - 1 = {x}^{2} - x - 2

 - {x}^{2} + x + x - 1 + 2 = 0

 - {x}^{2} + 2x + 1 = 0 \: | \times ( - 1)

 {x}^{2} - 2x - 1 = 0

a = 1

b = - 2

c = - 1

\Delta = {b}^{2} - 4ac

\Delta = {( - 2)}^{2} - 4 \times 1 \times ( - 1)

\Delta = 4 + 4

\Delta = 8

x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a} = \frac{ - ( - 2) \pm \sqrt{8} }{2 \times 1} = \frac{2 \pm2 \sqrt{2} }{2}

x_{1}= \frac{2 + 2 \sqrt{2} }{2} = \frac{2(1 + \sqrt{2}) }{2} = 1 + \sqrt{2}

x_{2}= \frac{2 - 2 \sqrt{2} }{2} = \frac{2(1 - \sqrt{2} )}{2} = 1 - \sqrt{2}

14) \frac{ {2}^{x} }{ {3}^{x} } = \frac{3}{2}

 \frac{ {2}^{ - 1} }{ {3}^{ - 1} } = \frac{ \frac{1}{2} }{ \frac{1}{3} } = \frac{1}{2} \times 3 = \frac{3}{2} = > x = - 1

15) log_{5}(3x + 1) = 1 + log_{5}(x - 1)

 log_{5}(3x + 1) = log_{5}(5) + log_{5}(x - 1)

 log_{5}(3x + 1) = log_{5}(5(x - 1))

3x + 1 = 5(x - 1)

3x + 1 = 5x - 5

3x - 5x = - 5 - 1

 - 2x = - 6 \: | \div ( - 2)

x = 3

16) \frac{1}{ {2}^{x} } = \frac{ {4}^{x} }{8}

 {2}^{x} \times {4}^{x} = 8 \times 1

 {2}^{x} \times {2}^{2x} = {2}^{3}

 {2}^{x + 2x} = {2}^{3}

 {2}^{3x} = {2}^{3} = > x = 1

17) \sqrt{2x + 3} = x + 2 \: | {( \: )}^{2}

2x + 3 \geqslant 0

2x + 3 = {x}^{2} + 4x + 4

 - {x}^{2} + 2x - 4x + 3 - 4 = 0

 - {x}^{2} - 2x - 1 = 0\: | \times ( - 1)

 {x}^{2} + 2x + 1 = 0

 {(x + 1)}^{2} = 0

x + 1 = 0 = > x = - 1

18) \sqrt{ {x}^{2} + 2x - 3} = 2 \sqrt{3} \: | {( \: )}^{2}

{x}^{2} + 2x - 3\geqslant0

 {x}^{2} + 2x - 3 = 12

 {x}^{2} + 2x - 3 - 12 = 0

 {x}^{2} + 2x - 15 = 0

 {x}^{2} + 5x - 3x - 15 = 0

x(x + 5) - 3(x + 5) = 0

(x - 3)(x + 5) = 0

x - 3 = 0 = > x = 3

x + 5 = 0 = > x = - 5

19) log_{2}( \sqrt{x + 1} ) = 1

 log_{2}( \sqrt{x + 1} ) = log_{2}(2)

 \sqrt{x + 1} = 2 \: | {( \: )}^{2}

x + 1 \geqslant 0

x + 1 = 4

x = 4 - 1

x = 3

20) \sqrt[3]{ {x}^{3} + x + 1 } = x \: | {( \: )}^{3}

 {x}^{3} + x + 1 = {x}^{3}

x + 1 = 0

x = - 1
Alte întrebări interesante