Matematică, întrebare adresată de octa98, 9 ani în urmă

Calculați:
a. integrala de la 1 la 4 din
 \frac{ {x}^{2} + 1 }{ \sqrt{x} }
b.integrala de la 1 la 2 din
  \frac{ {x}^{3} + 1}{ { \times }^{2} }dx
c.integrala de la 1 la 4 din
  \frac{ {(2 -  \sqrt{x}) }^{2} }{ {x}^{2} }dx
d.integrala de la 1 la 9 din
 \frac{ {x}^{2} -  \sqrt{x}  }{ \sqrt{ {x}^{3} } }dx

Răspunsuri la întrebare

Răspuns de Utilizator anonim
2
\displaystyle a)~\int\limits_1^4 \frac{x^2+1}{ \sqrt{x} }dx=\int\limits_1^4 \left(\frac{x^2}{ \sqrt{x} }+ \frac{1}{ \sqrt{x} }\right)dx=\int\limits_1^4 \frac{x^2}{ \sqrt{x} }dx+\int\limits_1^4 \frac{1}{ \sqrt{x} }dx=\\ \\ \\=\int\limits_1^4 \frac{x^2}{x^{ \frac{1}{2} }}dx+\int\limits_1^4 \frac{1}{x^{ \frac{1}{2}}}dx=\int\limits_1^4x^{ \frac{3}{2} }dx+\int\limits_1^4x^{-\frac{1}{2} }dx= \frac{x^{ \frac{3}{2}+1 }}{ \frac{3}{2} +1} \Bigg|_1^4+ \frac{x^{-\frac{1}{2}+1 }}{- \frac{1}{2}+1}\Bigg|_1^4=

\displaystyle =\frac{4^{ \frac{5}{2}}}{ \frac{5}{2}}- \frac{1^{ \frac{5}{2} }}{ \frac{5}{2}}+ \frac{4^{ \frac{1}{2} }}{ \frac{1}{2} }- \frac{1^{ \frac{1}{2} }}{ \frac{1}{2}}= \frac{2^{2\cdot \frac{5}{2} }}{ \frac{5}{2} }- \frac{1}{ \frac{5}{2}}+ \frac{2^{2\cdot \frac{1}{2} }}{ \frac{1}{2}}- \frac{1}{ \frac{1}{2} }= \\ \\ \\ =2^5\cdot  \frac{2}{5} -1\cdot \frac{2}{5}+2\cdot2-1\cdot2= \frac{2^6}{5}- \frac{2}{5}+4-2= \\ \\ \\ = \frac{64-2+20-10}{5}= \boxed{\frac{72}{5}  }

\displaystyle b)~\int\limits_1^2 \frac{x^3+1}{x^2}dx=\int\limits_1^2\left( \frac{x^3}{x^2}+ \frac{1}{x^2}  \right)dx=\int\limits_1^2 \frac{x^3}{x^2}dx+\int\limits_1^2 \frac{1}{x^2}dx=\\ \\ \\=\int\limits_1^2xdx+\int\limits_1^2x^{-2}dx= \frac{x^2}{2} } \Bigg|_1^2+ \frac{x^{-1}}{-1}\Bigg|_1^2=  \frac{2^2}{2}- \frac{1^2}{2}-\left(2^{-1}-1^{-1}\right)= \\ \\ \\= \frac{4-1}{2}-\left( \frac{1}{2}-1\right)= \frac{3}{2}-\left(- \frac{1}{2}\right)= \frac{4}{2}=\boxed{2}

\displaystyle c)~\int\limits_1^4 \frac{\left(2-\sqrt{x}\right)^2}{x^2}dx=\int\limits_1^4 \frac{2^2-2\cdot2\cdot\sqrt{x}+\left( \sqrt{x} \right)^2}{x^2}dx=\\ \\ \\=\int\limits_1^4 \frac{4-4 \sqrt{x}+x}{x^2}dx=\int\limits_1^4\left( \frac{4}{x^2}-\frac{4\sqrt{x} }{x^2}+\frac{x}{x^2}\right)dx=\\\\\\=\int\limits_1^4 \frac{4}{x^2}dx-\int\limits_1^4\frac{4\sqrt{x}}{x^2}dx+\int\limits_1^4 \frac{x}{x^2}dx=4\int\limits_1^4 \frac{1}{x^2}dx-4\int\limits_1^4 \frac{x^{ \frac{1}{2}}}{x^2}dx+\int\limits_1^4\frac{1}{x}dx=

\displaystyle =4\int\limits_1^4x^{-2}dx-4\int\limits_1^4x^{- \frac{3}{2} }dx+\int\limits_1^4 \frac{1}{x}dx=\\ \\ \\ =4\cdot \frac{x^{-1}}{-1}\Bigg|_1^4-4\cdot\frac{x^{-\frac{3}{2} +1}}{- \frac{3}{2}+1 }\Bigg|_1^4+ln~|x|\Bigg|_1^4=\\ \\ \\ =4\left(-4^{-1}+1^{-1}\right)-4 \left( \frac{4^{- \frac{1}{2} }}{-\frac{1}{2} }- \frac{1^{- \frac{1}{2}}}{-\frac{1}{2} }\right)+ln~4-ln~1=

\displaystyle =4\left(-\frac{1}{4}+1\right)-4\left(\frac{2^{2\cdot\left(- \frac{1}{2}\right) }}{- \frac{1}{2}}+ \frac{1}{ \frac{1}{2} }  \right)+ln~4-0= \\ \\ \\ =4 \cdot  \frac{3}{4}-4\left(- \frac{2^{-1}}{ \frac{1}{2}}+1\cdot2\right)+ln~4=3-4  \left(-2^{-1}\cdot 2+2\right)+ln~4= \\ \\ \\ =3-4\left(- \frac{1}{2} \cdot 2+2\right)+ln~4=3-4(-1+2)+ln~4=\\ \\ \\ =3-4 \cdot 1+ln~4=3-4+ln~4=\boxed{ln~4-1}

\displaystyle d)~\int\limits_1^9 \frac{x^2- \sqrt{x} }{ \sqrt{x^3} }dx=\int\limits_1^9\left( \frac{x^2}{ \sqrt{x^3} }- \frac{ \sqrt{x} }{ \sqrt{x^3} }\right)dx=\int\limits_1^9 \frac{x^2}{ \sqrt{x^3} }dx- \int\limits_1^9\frac{ \sqrt{x} }{ \sqrt{x^3} }dx=\\ \\ \\ =\int\limits_1^9 \frac{x^2}{x^{ \frac{3}{2} }}dx-\int\limits_1^9 \frac{x^{ \frac{1}{2} }}{x^{ \frac{3}{2} }}dx=\int\limits_1^9x^{ \frac{1}{2}}dx-\int\limits_1^9x^{- \frac{2}{2} }dx= \int\limits_1^9x^{ \frac{1}{2} }dx-\int\limits_1^9 \frac{1}{x}dx=

\displaystyle = \frac{x^{ \frac{1}{2}+1 }}{ \frac{1}{2}+1}\Bigg|_1^9-ln~|x|\Bigg|_1^9= \frac{9^{ \frac{3}{2} }}{ \frac{3}{2} }- \frac{1^{ \frac{3}{2} }}{ \frac{3}{2} }-\left(ln~9-ln~1\right)= \\ \\ \\  = \frac{3^{2\cdot \frac{3}{2} }}{ \frac{3}{2}}- \frac{1}{ \frac{3}{2} }-ln~9+ln~1=  \frac{3^3}{ \frac{3}{2} } -1\cdot  \frac{2}{3}-ln~9+0=  \\ \\ \\ =27 \cdot  \frac{2}{3} - \frac{2}{3} -ln~9= \frac{54-2}{3}-ln~9=\boxed{ \frac{52}{3}-ln~9 }
Alte întrebări interesante