Matematică, întrebare adresată de GunnerZiiiko, 8 ani în urmă

Calculați, după ce ați scos factorii de sub radical:
a)√160-( √810- √9610+ √6760)
b) √4365-( √3087+ √4732- √2268)

Răspunsuri la întrebare

Răspuns de JYOLO
7

a) \sqrt{160} - ( \sqrt{810} -  \sqrt{9610} +  \sqrt{6760}) =  \\  \\  \sqrt{160} =  \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 5} =  \sqrt{(2 \times 2) \times (2 \times 2) \times 2 \times 5} =  \sqrt{ {2}^{2} \times  {2}^{2} \times 2 \times 5  } = (2 \times 2) \sqrt{2 \times 5} = 4 \sqrt{10} \\  \\  \sqrt{810} =  \sqrt{2 \times 3 \times 3 \times 3 \times 3 \times 5} =  \sqrt{(3 \times 3) \times (3 \times 3) \times 2 \times 5} =  \sqrt{ {3}^{2} \times  {3}^{2} \times 2 \times 5  } = (3 \times 3) \sqrt{2 \times 5} = 9 \sqrt{10} \\  \\ \sqrt{9610} =  \sqrt{2 \times 5 \times 31 \times 31} =  \sqrt{(31 \times 31) \times 2 \times 5} =  \sqrt{ {31}^{2} \times 2 \times 5 } = 31 \sqrt{2 \times 5} = 31 \sqrt{10} \\  \\  \sqrt{6760} =  \sqrt{2 \times 2 \times 2 \times 5 \times 13 \times 13} =  \sqrt{(2 \times 2) \times (13 \times 13) \times 2 \times 5} =  \sqrt{ {2}^{2} \times  {13}^{2} \times 2 \times 5  } = (2 \times 13) \sqrt{2 \times 5} = 26 \sqrt{10} \\  \\ 4 \sqrt{10} - (9 \sqrt{10} - 31 \sqrt{10} + 26 \sqrt{10}) =  \\  \\ 4 \sqrt{10} - (9 - 31 + 26) \sqrt{10} =  \\  \\ 4 \sqrt{10} - (35 - 31) \sqrt{10} =  \\  \\ 4 \sqrt{10}  - 4 \sqrt{10} =  \\  \\ 0

b) \sqrt{4365} - ( \sqrt{3087} +  \sqrt{4732} -  \sqrt{2268}) =  \\  \\  \sqrt{4365} =  \sqrt{3 \times 3 \times 5 \times 97} =  \sqrt{(3 \times 3) \times 5 \times 97} =  \sqrt{ {3}^{2} \times 5 \times 97 }  = 3 \sqrt{5 \times 97} = 3 \sqrt{485} \\  \\  \sqrt{3087} =  \sqrt{3 \times 3 \times 7 \times 7 \times 7} =  \sqrt{(3 \times 3) \times (7 \times 7) \times 7} =  \sqrt{ {3}^{2} \times  {7}^{2} \times 7  } = (3 \times 7) \sqrt{7} = 21 \sqrt{7} \\  \\  \sqrt{4732} =  \sqrt{2 \times 2 \times 7 \times 13 \times 13} =  \sqrt{(2 \times 2) \times (13 \times 13) \times 7} =  \sqrt{ {2}^{2} \times  {13}^{2} \times 7  } = (2 \times 13) \sqrt{7} = 26 \sqrt{7} \\  \\  \sqrt{2268} =  \sqrt{2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7} =  \sqrt{(2 \times 2) \times (3 \times 3) \times (3 \times 3) \times 7} =  \sqrt{ {2}^{2} \times  {3}^{2} \times  {3}^{2} \times 7   } = (2 \times 3 \times 3) \sqrt{7} = 18 \sqrt{7} \\  \\ 3 \sqrt{485} - (21 \sqrt{7} + 26 \sqrt{7} - 18 \sqrt{7}) =  \\  \\ 3 \sqrt{485} - (21 + 26 - 18) \sqrt{7} =  \\  \\ 3 \sqrt{485} - (47 - 18) \sqrt{7} =  \\  \\ 3 \sqrt{485} - 29 \sqrt{7}


GunnerZiiiko: Multumesc mult! Apreciez
JYOLO: Cu mare drag!
Alte întrebări interesante