Matematică, întrebare adresată de karinmolan, 9 ani în urmă

calculeaza 3^3^3^3 : 3^3^5^2 = 3^27 : 3^30

Răspunsuri la întrebare

Răspuns de Rayzen
11
\\ $Calculam cele doua numere separat.

\boxed{1} \quad$Nu avem paranteze, calculam puterile de sus in jos:$ \\  \\ {{3^3}^3}^3 : {{3^3}^5}^2 =  {3^3}^{27} :{3^3}^{25} = (3)^{\big3^{\big{27}}}:(3)^{\big3^{\big{25}}} = 3^{\big{3^{27}-3^{25}}} = \\ \\= 3^{\big{3^{25}(3^2-1)}} =3^{\big{3^{25}(9-1)}} = 3^{\big{3^{25}\cdot 8}} \\  \\  \\ \boxed{2} \quad 3^{27}:3^{30}} = 3^{27-30} = 3^{-3}

\\ $Comparam cele 2 numere: $ \left\| \begin{array}{c}3^{\big{3^{25}\cdot 8}} $ $ \boxed{?} $ $ 3^{-3}\\ \\$-baze supraunitare egale.$\\ $-exponenti diferiti:\\ {\big{3^{25}\cdot 8} \ \textgreater \  -3 \end{array} \right |\Rightarrow 3^{\big{3^{25}\cdot 8}} \ \textgreater \  3^{-3} \\ \\ \\ \Rightarrow \boxed{\boxed{{{3^3}^3}^3 : {{3^3}^5}^2 \ \textgreater \  3^{27}:3^{25} }}

\\ $In concluzie, cele doua numere nu sunt nicidecum egale.
Alte întrebări interesante