Matematică, întrebare adresată de laurandy, 9 ani în urmă

Dacă se poate si vreti as dori si explicatie

Anexe:

Razzvy: la primul logaritm de la a) este baza 3?
laurandy: da

Răspunsuri la întrebare

Răspuns de Razzvy
1
a)
[tex]log_3(log_2(log_4256))=log_3(log_2(log_44^{4}))=\\\\ =log_3(log_24)=log_3(log_22^{2})=log_32[/tex]

b)
[tex]log_{ \frac{1}{2} }4+log_81024=log_{2^{-1}}4+log_{2^{3}}2^{10}=\\\\ =-1log_{2}2^{2}+3log_{2}2^{10}=-1*2+3*10=30-2=28[/tex]

c)
4^{3-log_42}=4^{3-2}=4^1=4

Razzvy: Spune-mi daca nu intelegi ceva sau ceva e in neinregula.
laurandy: este bine
laurandy: multumesc!
Razzvy: Cu placere!
Răspuns de Utilizator anonim
1

b) 

[tex]\it log_{\frac{1}{2}}4= \dfrac{log_2 4}{log_2{\dfrac{1}{2}}} =\dfrac{log_22^2}{log_22^{-1}} =\dfrac{2}{-1} = -2 [/tex]

\it log_8 1024 = \dfrac{log_21024}{log_28} =\dfrac{log_2 2^{10}}{log_22^3} = \dfrac{10}{3}

\it-2+\dfrac{10}{3} = \dfrac{-6+10}{3} =\dfrac{4}{3}\ .

c)

\it \log_42 = log_4\sqrt4 = log_4 4^{\dfrac{1}{2}} = \dfrac{1}{2}\cdot log_4 4 = \dfrac{1}{2}


Alte întrebări interesante