Matematică, întrebare adresată de ana6620, 8 ani în urmă

dau coroana va rog ajutor

Anexe:

Răspunsuri la întrebare

Răspuns de andyilye
1

a)

a = \bigg(\dfrac{1}{\sqrt{3}} + \dfrac{2}{\sqrt{12}} + \dfrac{3}{\sqrt{27}} + \dfrac{4}{\sqrt{48}}\bigg) : \dfrac{2}{\sqrt{3}} = \\

= \bigg(\dfrac{1}{\sqrt{3}} + \dfrac{\not2}{\not2\sqrt{3}} + \dfrac{\not3}{\not3\sqrt{3}} + \dfrac{\not4}{\not4\sqrt{3}}\bigg) \cdot \dfrac{\sqrt{3}}{2}\\

= \bigg(\dfrac{1}{\sqrt{3}} + \dfrac{1}{\sqrt{3}} + \dfrac{1}{\sqrt{3}} + \dfrac{1}{\sqrt{3}}\bigg) \cdot \dfrac{\sqrt{3}}{2} =\\

= \dfrac{4}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{2} = \dfrac{4}{2} = \bf 2 \\

b)

b = \dfrac{^{12)} 1}{3} + \dfrac{^{6)}1}{6} + \dfrac{^{4)}1}{9} + \dfrac{^{3)}1}{12} + \dfrac{^{2)}1}{18} = \dfrac{12 + 6 + 4 + 3 + 2}{36} = \\

= \dfrac{27^{(9} }{36} = \bf \dfrac{3}{4}\\

N = \bigg(\dfrac{1}{a} - 2 \cdot b\bigg)^{2022} = \bigg(\dfrac{1}{2} - 2 \cdot \dfrac{3}{4}\bigg)^{2022} = \bigg(\dfrac{1}{2} - \dfrac{3}{2}\bigg)^{2022}\\

= \bigg(\dfrac{1-3}{2}\bigg)^{2022} = \bigg(-\dfrac{2}{2}\bigg)^{2022} = \bigg(-1\bigg)^{2022} = 1^{2022} = \bf 1

\implies N = 1

Alte întrebări interesante