Matematică, întrebare adresată de bascketalin20, 9 ani în urmă

Demonstrati ca (3 + 3^{3} + 3^{5} + ... + 3^{19} | 30 .
| - divide . x^{123}

Răspunsuri la întrebare

Răspuns de saoirse1
5
Grupam termenii cate 2=>(3+27)+3 la puterea4(3+27)+....3la puterea16(3+27)=30(1+3 la puterea4+...3 la puterea16)=>. deoarece unuk din factori este30=> nr este multiplu de 30

bascketalin20: Multumesc
saoirse1: cu mare drag
Răspuns de alitta
7
 [tex]Avem:\;\\
.\;\;\;3^1+3^3+3^5+3^7+3^9+3^{11}+3^{13}+3^{15}+3^{17}+3^{19}=\\
=(\underbrace{3+27}_{=30})+3^4(3+27)+3^8(3+27)+3^{12}(3+27)+3^{16}(3+27)=\\
=30\cdot(1+3^4+3^8+3^{12}+3^{16})\,\vdots\,30 [/tex]
Alte întrebări interesante