Determina numarul natural n: 5^n+5^(n+1)+5^(n+2)=775
Răspunsuri la întrebare
Răspuns de
1
5ⁿ(1+5+25)=5²*31
5ⁿ*31=5²*31 se simplifica cu 31
5ⁿ=5²
n=2
5ⁿ*31=5²*31 se simplifica cu 31
5ⁿ=5²
n=2
Răspuns de
1
5^n+5^(n+1)+5^(n+2)=775
5^n+5^n*(5+1)+5^n*(5^2+1)=775
5^n+5^n*6+5^n*(25+1)=775
5^n+5^n*6+5^n*26=775
5^n*(1+6+26)=775
5^n*33=775
5^n=775:33
5^n=25
n=2
5^n+5^n*(5+1)+5^n*(5^2+1)=775
5^n+5^n*6+5^n*(25+1)=775
5^n+5^n*6+5^n*26=775
5^n*(1+6+26)=775
5^n*33=775
5^n=775:33
5^n=25
n=2
Alte întrebări interesante
Matematică,
9 ani în urmă
Istorie,
9 ani în urmă
Chimie,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Geografie,
9 ani în urmă