determinati n multimea numerelor naturale incat fractia 1+2+3+...+n pe 2013 sa fie
a) subunitara
b) supraunitara
Răspunsuri la întrebare
Răspuns de
4
n∈ N
(1+2+3+...+n )/2013<0
n(n+1)/2<2013
n(n+1)<4026
n²+n-4026<0
Δ = 1 + 4×4026 = 16105
√Δ = 126 , 9
n₁ = (-1-126,9)/2 =-127,9 :2 = - 63, 95
n₂ = (-1+126,9)/2 = 62,95
⇒ n ∈ { 0 ;1 ;2 ; ..... ; 62 }
(1+2+3+...+n )/2013>0
n(n+1)>4026
⇒ n ∈ { 63 ; 64 ; ...... }
(1+2+3+...+n )/2013<0
n(n+1)/2<2013
n(n+1)<4026
n²+n-4026<0
Δ = 1 + 4×4026 = 16105
√Δ = 126 , 9
n₁ = (-1-126,9)/2 =-127,9 :2 = - 63, 95
n₂ = (-1+126,9)/2 = 62,95
⇒ n ∈ { 0 ;1 ;2 ; ..... ; 62 }
(1+2+3+...+n )/2013>0
n(n+1)>4026
⇒ n ∈ { 63 ; 64 ; ...... }
Alte întrebări interesante
Limba română,
8 ani în urmă
Istorie,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Franceza,
9 ani în urmă