Matematică, întrebare adresată de alexandraceci, 9 ani în urmă

Exercitiile incercuite!

Anexe:

nalaby: ex 2(daca am inteles corect conditia
Fie x-numarul
(x-2)²-(x²+1)= -1
x²-4x+4 -x²-1=-1
-4x=-4
x=1

Răspunsuri la întrebare

Răspuns de cpw
3
2)  (x-2)²-(x²+1)= -1 => x²-4x+4 -x²-1=-1
4=4x=> x=1

3)     A1= 95*4+=380+76x
A2=
(80-4)*(95-x)=7220-76x
=> 380+76x=7220-76x
=> 152x=6840
x=45 m

4)  
Notam cu M : DM_|_EC
CB=EA=DM=x
EC=AB=30
 Aria ABCDE=450
AB*CB+DM*EC:2=450
30x+30x:2=30x+15x=45x =450 => x=10

5)2*( \frac{x-2}{3})+ \frac{1}{2} ( \frac{x-2}{3})=\frac{x-2}{3}+0,75
2*( \frac{x-2}{3})+ \frac{1}{2} ( \frac{x-2}{3})-\frac{x-2}{3}= \frac{3}{4}
( \frac{x-2}{3})(2+ \frac{1}{2}-1)= \frac{3}{4}
\frac{x-2}{3}* \frac{3}{2}=\frac{x-2}{2}= \frac{3}{4}    =\ \textgreater \  x-2=  \frac{3}{2}
x=  \frac{3}{2}+2=\ \textgreater \  x= \frac{7}{2} =3,5

0.5( \frac{2x- \sqrt{2} }{ \sqrt{3}} )- \frac{2}{3} ( \frac{ \sqrt{2}-2x }{ \sqrt{3}} )=( \frac{ \sqrt{3} }{ \sqrt{2}( \sqrt{2}x-1)  })^{-1 } + \frac{1}{5}
\frac{1}{2}( \frac{2x- \sqrt{2} }{ \sqrt{3}} )+ \frac{2}{3} ( \frac{ 2x- \sqrt{2} }{ \sqrt{3}} )=( \frac{ \sqrt{3} }{2x- \sqrt{2} })^{-1 } + \frac{1}{5}
\frac{1}{2}( \frac{2x- \sqrt{2} }{ \sqrt{3}} )+ \frac{2}{3} ( \frac{ 2x- \sqrt{2} }{ \sqrt{3}} )-  \frac{2x- \sqrt{2} }{ \sqrt{3}}= \frac{1}{5}
 ( \frac{2x- \sqrt{2} }{ \sqrt{3}} )*( \frac{1}{2} + \frac{2}{3} - 1 )= \frac{1}{5}
 ( \frac{2x- \sqrt{2} }{ \sqrt{3}} )* \frac{1}{6} = \frac{1}{5}  =\ \textgreater \   \frac{2x- \sqrt{2} }{ \sqrt{3}}  = \frac{6}{5}
2x- \sqrt{2} = \frac{6\sqrt{3}}{5} =\ \textgreater \ 2x= \frac{6\sqrt{3}}{5} + \sqrt{2} =\frac{6\sqrt{3}+5\sqrt{2}}{5}
x=\frac{6\sqrt{3}+5\sqrt{2}}{10}

alexandraceci: Trebuia demult rezolvata! Dar merci oricum.
Alte întrebări interesante