Explicatimi si mie metoda figurativa!
Va rog!
Miky93:
depinde si de problema
Răspunsuri la întrebare
Răspuns de
1
pai....de exemplu iti spune doua numere au suma egala cu 120 unul este de doua ori mai mare decat celalalt.scri a are un segment si b daca zice ca e de doua ori mai mare b are 2 segmente...impreuna au suma accea 120 si incepi:120:3(trei segmente)=40
apoi acesta 40 este a si b zice ca e de 2 ori mai mare decat celalalt :celalalt este a adc 40 si 40*2=80 si apoi adunam 80+40=120
sau daca zice ca este cu 12 mai mare pui cu 12 mai mare...sper ca te-am ajutat!
apoi acesta 40 este a si b zice ca e de 2 ori mai mare decat celalalt :celalalt este a adc 40 si 40*2=80 si apoi adunam 80+40=120
sau daca zice ca este cu 12 mai mare pui cu 12 mai mare...sper ca te-am ajutat!
Răspuns de
1
Suma a doua numere este 200 . Primul numar este cu 50 mai mare decat al doilea . Afla numerele .
a.I_____I+50
b.I_____I
Suma este 200 . Aflam suma partilor egale eliminand surplusul ( 50 ) :
200-50=150
Acum ne raman doua parti egale sau doua segmente . Aflam o parte egala :
150:2=75 ( numarul b )
75+50=125 ( numarul a )
Verificare : 125+75=200
Suma a doua numere este 700 . Primul numar este de 6 ori mai mare decat celalalt. Afla numerele .
a.I____I____I____I____I____I____I
b.I____I
Suma este 700 si avem 7 parti( segmente ) egale . Aflam o parte sau pe "b"
700:7=100 ( numarul b)
100x6=600 ( numarul a )
Verificare : 600+100=700
a.I_____I+50
b.I_____I
Suma este 200 . Aflam suma partilor egale eliminand surplusul ( 50 ) :
200-50=150
Acum ne raman doua parti egale sau doua segmente . Aflam o parte egala :
150:2=75 ( numarul b )
75+50=125 ( numarul a )
Verificare : 125+75=200
Suma a doua numere este 700 . Primul numar este de 6 ori mai mare decat celalalt. Afla numerele .
a.I____I____I____I____I____I____I
b.I____I
Suma este 700 si avem 7 parti( segmente ) egale . Aflam o parte sau pe "b"
700:7=100 ( numarul b)
100x6=600 ( numarul a )
Verificare : 600+100=700
Alte întrebări interesante
Matematică,
8 ani în urmă
Geografie,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă