Matematică, întrebare adresată de stelutapanturu, 9 ani în urmă

Fie a, b,c, cifre neutre in baza 10 si n=ab+ba+bc+cb+ac+ca. Aratati ca 9/n daca si numai daca 9/abc


ovdumi: ce intelegi tu prin cifre neutre?
ovdumi: n=22(a+b+c)
ovdumi: 9 | n ⇒ 9 | (a+b+c) ⇒ 9 | abc , vezi criteriul de divizibilitate cu 9
ovdumi: daca 9 | abc ⇒ 9 | (a+b+c) ⇒ 9 | 22(a+b+c) ⇒ 9 | n
ovdumi: deci s-a demonstrat in ambele sensuri
ovdumi: 9 | n inseamna, 9 divide pe n
ovdumi: poate ai vrut sa scri ca a,b, si c sunt nenule

Răspunsuri la întrebare

Răspuns de Utilizator anonim
0

[tex]\it \overline{ab} +\overline{ba} = 10a+b+10b+a=11a+11b=11(a+b) \\\;\\ \\\;\\ \it \overline{bc} +\overline{cb} = 10b+c+10c+b=11b+11c=11(b+c) \\\;\\ \\\;\\ \it \overline{ca} +\overline{ac} = 10c+a+10a+c=11c+11a=11(c+a)[/tex]



n = 11(a+b) + 11(b+c) + 11(c+a) = 11(a+b+b+c+c+a) =

=11(2a+2b+2c) = 11·2(a+b+c) = 22(a+b+c)


9|n ⇔ 9|22(a+b+c)⇔9|(a+b+c)⇔9|abc (barat)


Alte întrebări interesante