Fie AC ⊥ BD, cu (AC)∩(BD) = {M} si [DM]≡[BM]. Aratati ca :
a)[CA - bis. ∡BCD;
b)[AD]≡[AB]
c) MDC≡MBC
Răspunsuri la întrebare
Răspuns de
40
triunghiurile MBC siMDC sunt congruente deoarece sunt dreptunghice, au MC latura comuna si MB=MD
Rezulta ca si unghiurile DCM si BCM sunt egale, adica MC este bisectoarea lui BCD
la fel si triunghiurile BAM si DAM sunt congruente deoarece sunt dreptunghice, au pe AM latura comuna si MB=MD
Rezulta ca AB=AD
din primul punct rezulta ca si unghiurile MBC si MDC sunt congruente
Rezulta ca si unghiurile DCM si BCM sunt egale, adica MC este bisectoarea lui BCD
la fel si triunghiurile BAM si DAM sunt congruente deoarece sunt dreptunghice, au pe AM latura comuna si MB=MD
Rezulta ca AB=AD
din primul punct rezulta ca si unghiurile MBC si MDC sunt congruente
WindFury:
Multumesc
Alte întrebări interesante
Limba română,
8 ani în urmă
Limba română,
8 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Informatică,
9 ani în urmă