Matematică, întrebare adresată de denisaghirbice, 9 ani în urmă

Fie functia f: R -> R, f(x)=(m+1)x^2+(3m+5)x+2m+3 , m <> -1.
a) Sa se determine m apartine lui R astfel incat f sa fie descrescatoare pe [-1,3/2].
b) Sa se determine m apartine lui R pt, care ecuatia f(x)=0 are o singura solutie in intervalul [-1,1].


eminonis: Ce inseamna m<>-1?
denisaghirbice: diferit

Răspunsuri la întrebare

Răspuns de getatotan
8
a. functie descrescatoare          f(  -1 )   ≥ f( 3/2 )
m +1  - 3m - 5 + 2m +3 ≥  9m/4 + 9/4  + 9m/2 + 15 /2  +2m +3 
-2m -4 ≥ 27m /4+39/4
-  8m - 16  ≥ 27m + 39 
27 m + 8m ≤  -16 -39 
35 m ≤ - 55 
7 m ≤ -11              ; m ≤ -11/7
b.          f( -1) · f(1 )  < 0 
(  m+ 1  - 3m - 5 + 2m + 3 )· ( m+1+3m+5+2m+3 ) < 0
      - ( 6m  + 9 ) < 0 
          6m + 9 > 0             ; m > - 9/6      ; m  > - 3/2

Alte întrebări interesante