Matematică, întrebare adresată de Elenadanes, 9 ani în urmă

In triunghiul ABC dreptungic in A are un unghi de 15 grade. sa se demostreze ca inaltimea din A
este 1/4 din ipotenuza.


george141074: Am rezolvarea dar nu pot să o postez!
Erika27: Pff nu pot sa o postez...
Elenadanes: dece?
george141074: ai doi s-au înscris la răspuns și nu au rezolvat-o! Cere-o din nou!
mariusdarius07: si nu poti sa scrii la com rezolvarea?
mariusdarius07: haide ca renunt eu
george141074: Aștept!
mariusdarius07: gata
george141074: Foarte frumoasă problema! Realizează desenul ca să o înțelegi mai ușor!

Răspunsuri la întrebare

Răspuns de george141074
1
Conform relației de arie într-un tr dreptunghic (produsul catetelor este egal cu produsul ipotenuzei cu inaltimea) daca inaltimea este AD, avem AD*BC=AB*AC  relația(1)
Acum trebuie atenție! Construiești ΔABC cu unghiul B de 15 grade în sus și unghiul C în stînga, să zicem. Construim untriunghi simetric cu ABC, având cateta AB comună. Astfel obținem un Δ BCE isoscel cu BC=BE si unghiul de la vârf de 30 grade.
Acestui triunghi îi scriem aria în două feluri și obținem: AB*CE=BC*înălțimea din E.
Dar CE=2*AC si înălțimea din E este jumătate din BC (cateta opusă unghiului de 30 de grade) deci vom avea AB*AC*2=BC*BC/2 deci AB*AC=BC*BC/4 Relația(2)
Egalând relația(1) cu (2) obținem AD*BC=BC*BC/4. Împărțim prin BC pătrat expresia și
obținem AD/BC=1/4. 

Elenadanes: Multumesc mult! Cand este gata rezolvata pare mai simplu.
Alte întrebări interesante