Matematică, întrebare adresată de editor20573, 9 ani în urmă

l Suma vârstelor celor 101 dalmațieni este 1002 luni . Arată că cel puțin un dalmațian are vârsta exprimată printr-un număr par de luni

Răspunsuri la întrebare

Răspuns de AcelOm
74
Daca toate varstele ar fi exprimate prin numere impare de luni, cum suma a 101 numere impare este impara, suma lor nu ar putea fi 1002
Deci cel putin o varsta trebuie sa fie exprimata printr-un nr par de luni
Răspuns de albatran
37
Presupunem prin absord ca nici un dalmatian nu are varsta exprimata printr-un numar pard e luni.
atunci toti dalmatienii au varsta exprimata prin un numar imparde luni.Atunci suma varstelor lor este un numar impar (o suma de impara  numere impare va fi impara).
dar 1002 este un numar par; contradictie
deci nueste posibica toti dalmatienii sa aibe varsta exprimata prin numere impare si presupunerea noastra a fost gresita, falsa,
.Inseamna ca este adevarata contrara ei, cel putin un dalmatian are  varsta exprimata prin un numar par de luni


exttra; generalizare
 
restul dalmatienilor, care au varsta exprimat prin numere impare, trebuiesa dea o suma para, deci trebuie sa fie un numar par de dalmatienicu varsta im[para

daca dalmatienii cu varsta para ar fi in numar par ,dalmatienii cu varsta impara ar trebui sa fie si ei in numar par ptca suma varstelor sa dea 1002, un numar par.
nr par (dalmatieni cu varsta para )+par(dalmatieni cu varsta impara) =par dar 101 este impar.deci imposibil.deci dalmatienii cu varsta para nu pot fi in numar par

deci avem un numar impar de dalmatieni cu varsta para (deci cel putin 1)si un numar par de dalmatieni cu varsta impara
2k+1 dalmatieni cu varsta para, k∈{0;1;2...49}si 100-2k dalmatieni cu varsta impara, in total 50 de solutii

albatran: mersi, am fortat putin, stacheta colegului era de ja sus...
Alte întrebări interesante