Lungimile laturilor unui triunghi sunt proportionale cu numerele 3,4 si 5 . Aratati ca triunghiul este dreptunghic.
Răspunsuri la întrebare
Răspuns de
3
Notez cu a, b si c lungimile laturilor triunghiului.

Observam ca
. Adica teorema reciproca a lui Pitagora este verificata => triunghiul este dreptunghic.
Observam ca
Răspuns de
1
a, b, c laturile triunghiului
a/3 =b/4=c/5
presupunem ca Δ este dreptunghic
atunci "c" ar fi ipotenuza (e latura cea mai mare, c e dir.prop. cu 5 )
atunci ar trebui ca
c² =a² + b² (T.lui Pitagora)
din a/3 =c/5 ⇒ a =3c / 5
din b/4= c/5 ⇒ b = 4c / 5
⇒ c² = (3c/5)² + (4c/5)²
c² = 25 c² / 25
c² = c² , adevarat
⇒Δ este dreptunghic
a/3 =b/4=c/5
presupunem ca Δ este dreptunghic
atunci "c" ar fi ipotenuza (e latura cea mai mare, c e dir.prop. cu 5 )
atunci ar trebui ca
c² =a² + b² (T.lui Pitagora)
din a/3 =c/5 ⇒ a =3c / 5
din b/4= c/5 ⇒ b = 4c / 5
⇒ c² = (3c/5)² + (4c/5)²
c² = 25 c² / 25
c² = c² , adevarat
⇒Δ este dreptunghic
Alte întrebări interesante
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
10 ani în urmă
Limba română,
10 ani în urmă
Geografie,
10 ani în urmă