Matematică, întrebare adresată de SAlexandru11, 9 ani în urmă

Ma puteti ajuta la ex 2 de la Subiectul 3 va rog ?

Anexe:

Răspunsuri la întrebare

Răspuns de Utilizator anonim
3
\displaystyle 2.~~~f:(0,+\infty)\rightarrow \mathbb{R},~f(x)= \frac{x+2}{x} \\ \\ \\a)~\int\limits_1^2xf(x)dx= \frac{7}{2} \\ \\ \\ \int\limits_1^2xf(x)dx=\int\limits_1^2 x \cdot  \frac{x+2}{x} dx=\int\limits_1^2(x+2)dx=\int\limits_1^2xdx+\int\limits_1^22dx=\\ \\ \\ =\int\limits_1^2xdx+2\int\limits dx=\frac{x^2}{2} \Bigg|_1^2+2x\Bigg|_1^2=\left( \frac{2^2}{2}-\frac{1^2}{2} \right)+(2\cdot2-2\cdot1)=\\ \\ \\ = \frac{4-1}{2} +(4-2)= \frac{3}{2} +2= \frac{3+2\cdot2}{2} = \frac{3+4}{2} =\mathbf{ \frac{7}{2} }

\displaystyle b)~F:(0,+\infty)\rightarrow \mathbb{R},~F(x)=x+2ln~x+2015\\ \\ \\ F'(x)=(x+2ln~x+2015)'=x'+(2ln~x)'+(2015)'=\\ \\ \\ \textstyle{=1+2 \cdot (ln~x)'+0=1+2 \cdot \frac{1}{x} =1+ \frac{2}{x} = \frac{x+2}{x} =f(x)~\forall x\in(0,+\infty)\Rightarrow}\\ \\\\ \Rightarrow \mathbf{F~este~o~primitiv\u{a}~a~func\c{t}iei~f.}

\displaystyle c)~g:(0,+\infty)\rightarrow\mathbb{R},~g(x)=(f(x)-1)ln~x~~~~~~~~~~~~~x=1,~x=e\\ \\ \\g(x)=(f(x)-1)ln~x=\left( \frac{x+2}{x} -1\right)ln~x= \frac{x+2-x}{x} \cdot ln~x=  \frac{2ln~x}{x} \\ \\ \\ \int\limits_1^e \frac{2ln~x}{x} =2\int\limits_1^e \frac{ln~x}{x} =2 \cdot  \frac{ln^2x}{2} \Bigg|_1^e=2\left( \frac{ln^2e}{2} - \frac{ln^21}{2} \right)=\\ \\ \\ =2 \cdot  \frac{1-0}{2} =2 \cdot  \frac{1}{2} = \frac{2}{2} =1\\ \\ \\ \mathcal{A}=|1|=\mathbf{1}
Alte întrebări interesante