Numim triunghi pitagora un triunghi dreptunghic cu lungimile laturilor numere naturale. demonstrati ca orice numar natural care este suma de doua patrate perfecte este lungimea ipotenuzei unui triunghi pitagora
Semaka2:
ceva e gresit. 4+100=104 radical 104 nu este numar natural
Răspunsuri la întrebare
Răspuns de
1
Răspuns:
Teorema lui Pitagora:
Într-un triunghi dreptunghic, pătratul lungimii ipotenuzei este egal cu suma pătratelor lungimilor catetelor.
Fiind dat ΔABC dreptunghic, teorema lui Pitagora se poate scrie astfel:
BC²=AB²+AC²
Demonstraţie
Fie triunghiul dreptunghic ABC
(A=90°). Construim perpendiculara din A pe latura opusă BC şi fie D piciorul acestei perpendiculare.Triunghiul ABC fiind dreptunghic putem aplica teorema catetei, de două ori, pentru fiecare din catetele sale.
Pentru cateta AC, obţinem:AC²=CD·CB (1)
Pentru cateta AB, obţinem:AB²=DB·BC (2)
Adunând relaţiile (1) şi (2) obţinem:
AC²+AB²=CD·CB+DB·BC
AC²+AB²=BC·(CD+DB)
=>AC²+AB²=BC²
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă