Matematică, întrebare adresată de vladrockpopescu, 8 ani în urmă

Repede va rog frumos
......................

Anexe:

Răspunsuri la întrebare

Răspuns de george7066
0
VO=h ( înălțime)

OT= apotema bazei

VT= apotema piramidei

OT=AB : 2= 8 : 2= 4

În triunghiul VOT aplic Teorema lui Pitagora

..2. .2. .2.

ip = cat1 + cat2

2. 2. 2.

VT = 4 + 8

2

VT = 16 + 64

vt = \sqrt{80}

vt = 4 \sqrt{5}

În triunghiul VTB aplic teorema lui Pitagora

2. 2. 2.

ip = cat1 + cat2

{vb}^{2} = {4}^{2} + {4 \sqrt{5} }^{2}

2

VB = 16 + 16 · 5

2

VB = 16 + 80

vb = \sqrt{96}

vb = 4 \sqrt{6}

a)

v =\frac{aria \: bazei \times h}{2}

 v = \frac{64 \times 3}{3}

v = 64 \: \: \: \: \: \: {cm}^{3}

b) apotema piramidei= VT =

4 \sqrt{5}

c) l= latura

p bazei ( perimetrul bazei)

p \: bazei = l \times 4

p \: bazei = 8 \times 4 = 32 \: \: \: \: cm

ap pir ( apotema piramidei)

Al ( aria laterală)=

al = \frac{p \: bazei \: \times ap \: pir}{2}

al = \frac{32 \times 4 \sqrt{5} }{2}

al = 64 \sqrt{5} \: \: \: \: {cm}^{2}

d) Ab (aria bazei)

ab = {l}^{2}

ab = {8}^{2} = 64 \: \: \: \: \: {cm}^{2}

At( aria laterală)

At= Al + 2 x Ab

at = 64 \sqrt{5} + 2 \times 64

at = 64 \sqrt{5} + 128 \: \: \: {cm}^{2}

vladrockpopescu: Multumesc mult!
vladrockpopescu: Poti sa ma mai ajuti?
george7066: da
vladrockpopescu: Ok poti sa te uiti pe pagina mea te rog frumos la urmatoarele
vladrockpopescu: Nu mai pot pune, pot sa ti le dau pe messenger sau instagram?
george7066: dar cum te cheamă pe insagram
vladrockpopescu: vladimirelpatron
Alte întrebări interesante