Matematică, întrebare adresată de vasilecristian01, 8 ani în urmă

Rezolvati, in multimea numerelor reale, ecuatiile:

a) radical 3 * x + 3 = 0
b) -radical5 * x +10 = radical20 *x -20
c) y-radical2/3 + y+radical2/2=4radical2 + y
d) (y-radical3) * (y-radical5) = 0
e) /7 -radical7 * x / = 14

Răspunsuri la întrebare

Răspuns de andyilye
1

a)

\sqrt{3} x + 3 = 0 \iff \sqrt{3} x = - 3

x = -\dfrac{3}{\sqrt{3} } \iff x = -\dfrac{3\sqrt{3}}{3}

\implies x = - \sqrt{3}

b)

-\sqrt{5} x + 10 = \sqrt{20} x -20

2\sqrt{5} x + \sqrt{5} x = 20 + 10

3\sqrt{5} x = 30 \iff x = \dfrac{30}{3\sqrt{5} }

x = \dfrac{30\sqrt{5}}{15} \implies x = 2\sqrt{5}

c)

\dfrac{y-\sqrt{2} }{3} + \dfrac{y+\sqrt{2} }{2} = 4\sqrt{2} + y \ \ \Big|\cdot 6

2(y - \sqrt{2}) + 3(y + \sqrt{2}) = 24\sqrt{2} + 6y

2y - 2\sqrt{2} + 3y + 3\sqrt{2} = 24\sqrt{2} + 6y

5y + \sqrt{2} = 24\sqrt{2} + 6y

6y - 5y = \sqrt{2} - 24\sqrt{2}

\implies y = -23\sqrt{2}

d)

(y - \sqrt{3}) \cdot (y - \sqrt{5}) = 0

y - \sqrt{3} = 0 \implies y = \sqrt{3}

y - \sqrt{5} = 0 \implies y = \sqrt{5}

\implies S = \Big\{\sqrt{3} ; \sqrt{5}\Big\}

e)

\Big|7 - \sqrt{7} x \Big| = 14 \iff 7 - \sqrt{7} x = \pm 14\\

7 - \sqrt{7} x = - 14 \iff \sqrt{7} x = 7 +14

\sqrt{7} x = 21 \iff x = \dfrac{21}{\sqrt{7} }

x = \dfrac{21\sqrt{7} }{7} \iff x = 3\sqrt{7}

7 - \sqrt{7} x = 14 \iff \sqrt{7} x = 7 - 14

\sqrt{7} x = -7 \iff x = -\dfrac{7}{\sqrt{7} }

x = -\dfrac{7\sqrt{7} }{7} \iff x = -\sqrt{7}

\implies S = \Big\{-\sqrt{7} ; 3\sqrt{7}\Big\}

Alte întrebări interesante