Rezolvati in multimea umerelor reale ecuatia radical din x-1 = x-3
Răspunsuri la întrebare
Răspuns de
1
[tex]\sqrt{x-1} = x-3 \\ \\ \boxed{1}\quad x-1\geq 0 \Rightarrow x
\geq 1 \\ \boxed{2} \quad x-3\geq 0 \Rightarrow x \geq 3 \\ $Din
\boxed{1} \cap $ $ \boxed{2} \Rightarrow D = [3,+\infty)[/tex]

[tex] \Rightarrow x_{1,2} = \dfrac{7\pm 3 }{2}\Rightarrow x_1 = 2\notin D,\quad x_2 = 5 \in D \\ \\ \Rightarrow \boxed{S = \big\{5\big\}}[/tex]
[tex] \Rightarrow x_{1,2} = \dfrac{7\pm 3 }{2}\Rightarrow x_1 = 2\notin D,\quad x_2 = 5 \in D \\ \\ \Rightarrow \boxed{S = \big\{5\big\}}[/tex]
Utilizator anonim:
Aici e o confuzie ! Pe linia a 2-a nu trebuie să apară | x -1|.
Răspuns de
1
Pentru existența ecuației date sunt necesare condițiile:
x - 1 ≥ 0 și x - 3 ≥ 0
Din aceste două condiții rezultă domeniul de existență :
D = [3, ∞)
Acum rezolvăm ecuația și reținem soluțiile care aparțin domeniului D.
[tex]\it \sqrt{x-1} =x-3 \Rightarrow \it (\sqrt{x-1})^2 =(x-3)^2\Rightarrow x-1=x^2-6x+9 \Rightarrow \\\;\\ \Rightarrow x^2-7x+10 = 0 \Rightarrow x^2-2x-5x+10=0\Rightarrow \\\;\\ \Rightarrow x(x-2)-5(x-2)=0 \Rightarrow x_1= 2, \ \ x_2 = 5. [/tex]
Din cele două soluții, numai x = 5 ∈ D.
Prin urmare, ecuația inițială admite soluția unică x = 5.
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Engleza,
9 ani în urmă
Limba română,
9 ani în urmă