Rezolvați în R inecuația:
|3-2x| + |4x-6| ≤ 6
Am nevoie de câteva explicații, nu de rezolvare. Mulțumesc.
Răspunsuri la întrebare
Răspuns de
1
/3-2x/ = 3-2x, x≥3/2
= - (3-2x), x∠3/2
/4x-6/ = 4x-6, x≥3/2
= - (4x-6), x∠3/2
pt x≥3/2, inecuatia devine 3-2x+4x-6 ≤6
pt x∠3/2, inecuatia devine -(3-2x)-(4x-6)≤6
Aceasta inecuatie este un caz particular, cand pt acelasi nr, ambele module sunt pozitive/negative.
In general, se intocmeste un tabel, in parte de sus se trec crescator valorile pt care modulul devine zero.
In tabel se trece pe cate o linie separata fiecare modul, si se face regula semnelor.
Se face calculul pe intervale.
Sper ca aceasta informatie ai solicitat-o.
= - (3-2x), x∠3/2
/4x-6/ = 4x-6, x≥3/2
= - (4x-6), x∠3/2
pt x≥3/2, inecuatia devine 3-2x+4x-6 ≤6
pt x∠3/2, inecuatia devine -(3-2x)-(4x-6)≤6
Aceasta inecuatie este un caz particular, cand pt acelasi nr, ambele module sunt pozitive/negative.
In general, se intocmeste un tabel, in parte de sus se trec crescator valorile pt care modulul devine zero.
In tabel se trece pe cate o linie separata fiecare modul, si se face regula semnelor.
Se face calculul pe intervale.
Sper ca aceasta informatie ai solicitat-o.
albatran:
Si am incalecat pe o șa , si am spus povestea așa la materia matematica
Răspuns de
1
In acest caz particular
vom tine cont ca:
|4x-6|=|2(2x-3)|=2|2x-3| pt ca |ax|=a|x| , daca a>0
si ca |3-2x|=|2x-3| pt ca |x|=|-x|
atunci inecuatia devine;
|2x-3|+2|2x-3|≤6
adica
3|2x-3|≤6
sau , impartind cu numarul pozitiv 3
|2x-3|≤2, caz cunoscut
-2≤2x-3≤2 |+3
0≤2x≤5 |:2
0≤x≤5/2
x∈[0;5/2] este solutia
EXTRA
La modul general
se "expliciteaza" fiecare modul
si apoi se rezolva inegalitatile rezultate pe fiecare interval
solutia obtinuta(un interval) se intersecteaza cu intervalul pe care are forma dedusa si aceeae este solutia pe acel interval
se repeta povestea pt fiecare interval
se reunesc intervalele obtinute
de exemplu, la pura inspiratie, daca ai avea |x-2|+|x-4|<5
ar trebui sa explicitezi fiecare modul si iti va rezulta dupa insumarea pe intervale
-2x+6<5 pt x<-2
-2x<-1
2x>1
x>1/2 nu avem solutii daca intersectam cu x<-2
x-2+4-x<5, pt x∈(2;4)
2<5 adevarat pt oricare x∈(2;4)
pt 2 si 4 in particular, verifici tu si vezi ca satisfac inegalitatea
x-2+x-4<5 pt x>4
2x-6<5
2x<11
x<11/4 intersectat cu x>4 da x∈∅
ram,an {2}∪(2;4)∪{4}=[2;4]
vom tine cont ca:
|4x-6|=|2(2x-3)|=2|2x-3| pt ca |ax|=a|x| , daca a>0
si ca |3-2x|=|2x-3| pt ca |x|=|-x|
atunci inecuatia devine;
|2x-3|+2|2x-3|≤6
adica
3|2x-3|≤6
sau , impartind cu numarul pozitiv 3
|2x-3|≤2, caz cunoscut
-2≤2x-3≤2 |+3
0≤2x≤5 |:2
0≤x≤5/2
x∈[0;5/2] este solutia
EXTRA
La modul general
se "expliciteaza" fiecare modul
si apoi se rezolva inegalitatile rezultate pe fiecare interval
solutia obtinuta(un interval) se intersecteaza cu intervalul pe care are forma dedusa si aceeae este solutia pe acel interval
se repeta povestea pt fiecare interval
se reunesc intervalele obtinute
de exemplu, la pura inspiratie, daca ai avea |x-2|+|x-4|<5
ar trebui sa explicitezi fiecare modul si iti va rezulta dupa insumarea pe intervale
-2x+6<5 pt x<-2
-2x<-1
2x>1
x>1/2 nu avem solutii daca intersectam cu x<-2
x-2+4-x<5, pt x∈(2;4)
2<5 adevarat pt oricare x∈(2;4)
pt 2 si 4 in particular, verifici tu si vezi ca satisfac inegalitatea
x-2+x-4<5 pt x>4
2x-6<5
2x<11
x<11/4 intersectat cu x>4 da x∈∅
ram,an {2}∪(2;4)∪{4}=[2;4]
Alte întrebări interesante
Matematică,
8 ani în urmă
Fizică,
8 ani în urmă
Limba română,
8 ani în urmă
Biologie,
9 ani în urmă
Matematică,
9 ani în urmă