rezolvați inecuațiile:
a)4x-5≤3x-2 ,x € N
b)7x+9>3x-7 ,x € Z_
c)2|x-1|+3x≤3(x+2) ,x€ N*
d)3|x+2|-2x≤2(2-x)+5, x € Z_
(Z_ :Z minus)
Răspunsuri la întrebare
Răspuns:
a)
\begin{gathered}4x−5 < 3x− 2 \\ 4x - 3x < - 2 + 5 \\\implies x < 3\end{gathered}
4x−5<3x−2
4x−3x<−2+5
⟹x<3
x ∈ N => x ∈ {0; 1; 2}
b)
\begin{gathered}7x+9 > 3x-7 \\ 7x - 3x > - 7 - 9 \\ 4x > - 16 \\ \implies x > - 4\end{gathered}
7x+9>3x−7
7x−3x>−7−9
4x>−16
⟹x>−4
x ∈ Z => x ∈ {-3; -2; -1; 0; 1; ...}
c)
\begin{gathered}2x - 1 + 3x \leqslant 3(x + 2) \\ 5x - 1\leqslant 3x + 6 \\ 5x - 3x \leqslant 6 + 1 \\ 2x \leqslant 7 \\ x \leqslant \frac{7}{2} \iff x \leqslant 2 \frac{1}{2} \end{gathered}
2x−1+3x⩽3(x+2)
5x−1⩽3x+6
5x−3x⩽6+1
2x⩽7
x⩽
2
7
⟺x⩽2
2
1
x ∈ N* => x ∈ {1; 2}
d)
\begin{gathered}3x +21-2x \leqslant 2(2-x)+5 \\ x + 21 \leqslant 4 - 2x + 5 \\ x + 2x \leqslant 9 - 21 \\ 3x \leqslant 12 \implies x \leqslant 4\end{gathered}
3x+21−2x⩽2(2−x)+5
x+21⩽4−2x+5
x+2x⩽9−21
3x⩽12⟹x⩽4
x ∈ Z => x ∈ {...; -1; 0; 1; 2; 3; 4}