Matematică, întrebare adresată de Ghc15, 9 ani în urmă

Sa se calculeze sin si cos de 2pi/3. 13pi/6. 4pi/3.

Răspunsuri la întrebare

Răspuns de skatesodrawp5s3qu
8
 \frac{2 \pi }{3} = \frac{2*180}{3} =  \frac{360}{3} = 120
[tex] \frac{13 \pi }{6} = \frac{13*180}{6} = \frac{2340}{6} =390 [/tex]
 \frac{4 \pi }{3} = \frac{4*180}{3} = \frac{720}{3} = 240

Exemplu de calcul:
sin120*= sin(90*+30*) = sin90cos30+sin30cos90= 1* \sqrt{3} /2 +1/2*0=  \sqrt{3} /2 
cos120*=cos(90*+30*) = cos90cos30-sin90sin30= 0* \sqrt{3}/2 -1*1/2=-1/2

Formule
sinx*=sin( \alpha + \beta )= sin \alpha*cos \beta+sin \beta*cos \alpha
sinx*=sin( \alpha - \beta )= sin \alpha*cos \beta-sin \beta*cos \alpha

cosx=cos( \alpha + \beta )= cos \alpha*cos \beta-sin \beta*sin \alpha
cosx=cos( \alpha - \beta )= cos \alpha*cos \beta+sin \beta*sin \alpha

Mult succes in elucidarea problemelor.

Răspuns de zrinidani
5
sin (2π/3)=sin (π–2π/3)=sin (π/3)=√3/2
cos (2π/3)=–cos(π–2π/3)=–cos(π/3)=–1/2

sin(13π/6)=sin(2π+π/6)=sin(π/6)=1/2
cos(13π/6)=cos(2π+π/6)=cos(π/6)=√3/2

sin(4π/3)=sin(2π–2π/3)=sin(–2π/3)=–sin(2π/3)=–sin(π–2π/3)=–sin(π/3)=–√3/2
cos(4π/3)=cos(2π–2π/3)=cos(–2π/3)=cos(2π/3)=cos(π–2π/3)=cos(π/3)=1/2
Alte întrebări interesante