Sa se demonstreze ca pentru n e N au loc egalitatile
a)
b)
c)
Urgeeeent va rooog!
Răspunsuri la întrebare
Răspuns:
a)
[tex]\frac{1}{1*2} = \frac{1}{1} - \frac{1}{2}\\ \frac{1}{2*3} = \frac{1}{2} - \frac{1}{3}\\ .....\\ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}[/tex]
⇒
[tex]\frac{1}{1*2} + \frac{1}{2*3} +.....+\frac{1}{n(n+1)} =\\ = \frac{1}{1} - \frac{1}{2}+ \frac{1}{2} - \frac{1}{3}+....+ \frac{1}{n} - \frac{1}{n+1} =\\ = \frac{1}{1} -\frac{1}{n+1} =\\ = \frac{n+1-1}{n+1}=\\ = \frac{n}{n+1}[/tex]
b)
⇒
[tex]\frac{1}{1*3} +\frac{1}{3*5} +...+\frac{1}{(2n-1)(2n+1)} =\\ = \frac{1}{2} [\frac{1}{1} -\frac{1}{3} ]+\frac{1}{2} [\frac{1}{3} -\frac{1}{5} ]+...+\frac{1}{2} [\frac{1}{2n-1} -\frac{1}{2n+1} ]=\\ = \frac{1}{2} [\frac{1}{1} -\frac{1}{3} +\frac{1}{3} -\frac{1}{5} +...+\frac{1}{2n-1} -\frac{1}{2n+1} ]=\\ = \frac{1}{2} [\frac{1}{1} -\frac{1}{2n+1} ]=\\ = \frac{1}{2}\frac{2n+1-1}{2n+1} =\\ = \frac{1}{2}\frac{2n}{2n+1} =\\ = \frac{n}{2n+1} [/tex]
c)
[tex]\frac{1}{(3k-2)(3k+1)} = \frac{1}{3} [\frac{1}{3k-2} -\frac{1}{3k+1} ]\\ [/tex]
⇒
[tex]\frac{1}{3} [\frac{1}{1} -\frac{1}{4} ]+\frac{1}{3} [\frac{1}{4} -\frac{1}{7} ]+...+ \frac{1}{3} [\frac{1}{3n-2} -\frac{1}{3n+1} ] =\\ = \frac{1}{3} [\frac{1}{1} -\frac{1}{4} +\frac{1}{4} -\frac{1}{7} +...+\frac{1}{3n-2} -\frac{1}{3n+1} ] =\\ = \frac{1}{3} [\frac{1}{1} -\frac{1}{3n+1} ] =\\ = \frac{1}{3} [\frac{3n+1-1}{3n+1} ] =\\ = \frac{1}{3} [\frac{3n}{3n+1} ] =\\ = \frac{n}{3n+1} [/tex]