Matematică, întrebare adresată de Damaya, 8 ani în urmă

Sa se determine m∈R, stiind ca {x∈R | x²-(m+2)x+m+1=0}={1}
Va rog sa ma ajutati !


Darrin2: nu se intelege
Darrin2: egal cu 0 sau cu 1?
Damaya: din ce e in paranteza e 0 dar asta incerc sa imi dau seama si eu.. dc este in acolada 1
Damaya: asa imi arata ex
Darrin2: poti sa daci o poza la ex?
Darrin2: faci
Damaya: as putea dar nu ma lasa, decat daca fac alta postarw
lucasela: {x∈R | x²-(m+2)x+m+1=0} inseamna multimea solutiilor ecuatiei scrise. {1} inseamna ca ecuatia are o solutie, deci, delta=0 => m=0.
Rayzen: Corect, Lucasela.

Răspunsuri la întrebare

Răspuns de Rayzen
5

S = \Big\{x\in \mathbb{R}\,\Big|\,\,x^2-(m+2)x+m+1 = 0\Big\} = \{1\} \\ \\S = \{1\}\\ \\ \Rightarrow x^2-(m+2)x+m+1 = 0 \quad\to\quad x \in \{1\}\text{ (solutie unica)} \\\\ \\ \Rightarrow \begin{cases}\Delta = 0\\ x^2-(m+2)x+m+1\Big|_{x=1} = 0\end{cases} \\ \\\\ \Rightarrow \begin{cases}(m+2)^2-4(m+1) = 0 \\ 1-(m+2)\cdot 1+m+1 = 0\end{cases} \\ \\\\ \Rightarrow \begin{cases}m^2+4m+4-4m-4=0\\1-m-2+m+1 = 0\end{cases}

\\\Rightarrow \begin{cases}m^2 = 0 \\ 0\cdot m = 0 \end{cases} \Rightarrow \begin{cases}m= 0 \\ m\in \mathbb{R} \end{cases}\Bigg|\Rightarrow m\in \{0\}\cap \mathbb{R}\,\Rightarrow\,\boxed{m = 0}

Alte întrebări interesante