să se determine m real pt care funcția f:R→R este injectivă
b) f(x)=x+2m(x+1)^2+(2-m)(2x-1)^2
Anexe:
![](https://ro-static.z-dn.net/files/d82/3b68d96889a312fa947c7a3ca57ad171.jpg)
albatran:
o ordonezi dupa puteruile lui x, si anulezi paranteza caresa t pe langa x^2...in felul acesta o faci fctie de grad1, care e injectiva
Răspunsuri la întrebare
Răspuns de
2
Răspuns:
m=4
Explicație pas cu pas:
- anulam coeficientul lui x²
restul vedem dupa
f(x) =x²(2m+4(2-m) ) +nu conteaza, functie de grad 1
2m+8-4m=0
2m=8 ...m=4
- pardon, verificam daca nu cumva m=4 anuleaz si termenul in x, ca sa nu avem o functie constanta
4mx-4x(2-m)=-8x, nu depinde de m, deci OK m=4
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă