Matematică, întrebare adresată de Chipicaoo, 9 ani în urmă

Sa se determine numarul de permutari ale multimilor:
a) A= { x ∈ N |  \frac{24}{x+1} ∈ N }
b) A= { n ∈ N | 2n+1 divide 21 }

Răspunsuri la întrebare

Răspuns de Miky93
100
a)A=\{x \ \in N/\frac{24}{x+1} \in N \} \\\\ \frac{24}{x+1} \in N \ \Longrightarrow x+1|24 \longrightarrow x+1 \in \{1;2;3;4;6;8;12;24 \} \\\\\\ x+1=1 \to x=0 \\ x+1=2 \to x=1 \\ x+1=3\to x=2 \\ x+1=4 \to x=3 \\ x+1=6\to x=5 \\ x+1=8 \to x=7 \\ x+1=12 \to x=11 \\ x+1=24 \to x=23 \\\\\\ \boxed{A = \{0;1;2;3;5;7;11;23 \}} \longrightarrow P_8=8!

b) A= \{n \in N/ \ \ 2n+1|21 \} \\\\\\ 2n+1|21  \ \ \ \Longrightarrow 2n+1 \in \{1;3;7;21 \}\\ n \in N \\\\\\\\ 1)2n+1=1 \ \textless \ =\ \textgreater \  2n=0 \to n=0 \\\\ 2)2n+1=3\ \textless \ =\ \textgreater \ 2n=2\to n=1 \\\\ 3)2n+1=7\ \textless \ =\ \textgreater \ 2n=6\to n=3 \\\\ 4)2n+1=21\ \textless \ =\ \textgreater \ 2n=20\to n=10 \\\\\\ \boxed{A= \{0;1;3;10 \}} \longrightarrow P_4=4!=24
Alte întrebări interesante