Matematică, întrebare adresată de octacore059, 8 ani în urmă

Salut,am nevoie Urgent de rezolvare!​

Anexe:

Răspunsuri la întrebare

Răspuns de iakabcristina2
2

Răspuns:

Ai răspuns atașat pe foaie.

Anexe:
Răspuns de pav38
3

Răspuns:

Explicație pas cu pas:

\bf a=\Big[4^{11}\cdot\big(20\big)^{20}\Big]: \Big [2^{16}\cdot125\cdot\big (2^{5}\big)^{3}\cdot5^{7}\Big]^{2}+2^{3}+\big(7+7^{2}+7^{3}+..+7^{2021}\big)^0

\bf a=\Big[\big(2^{2}\big)^{11}\cdot\big(2^{2}\cdot5\big)^{20}\Big]: \Big [2^{16}\cdot 5^{3}\cdot2^{5\cdot3}\cdot5^{7}\Big]^{2}+2^{3}+1

\bf a=\Big(2^{2\cdot 11}\cdot2^{2\cdot20}\cdot5^{20}\Big): \Big(2^{16}\cdot 5^{3}\cdot2^{15}\cdot5^{7}\Big)^{2}+2^{3}+1

\bf a=\Big(2^{22}\cdot2^{40}\cdot5^{20}\Big): \Big(2^{16+15}\cdot 5^{3+7}\Big)^{2}+8+1

\bf a=\Big(2^{22+40}\cdot5^{20}\Big): \Big (2^{31}\cdot 5^{10}\Big)^{2}+8+1

\bf a=\Big(2^{62}\cdot5^{20}\Big):  \Big(2^{31\cdot2}\cdot 5^{10\cdot2} \Big)+8+1

\bf a=\Big(2^{62}\cdot5^{20}\Big):  \Big(2^{62}\cdot 5^{20} \Big)+9

\bf a= 1+9

\bf  \red{\underline{~a=10~}}

_____________________

\bf b=(41^2-82+1) :8:5-(2^6-2^5+2^2-2^0)

\bf b=(1681-82+1) :8:5-(64-32+4-1)

\bf b=1600 :8:5-35

\bf b=200:5-35

\bf b=40-35

\purple{\underline{~\bf b=5~}}

_____________________

\bf c=3^{90}-4\cdot9^{44}+2^{208}:\big(2\cdot4^{103}\big)-5\cdot\big(9^{22}\big)^2

\bf c=3^{90}-2^{2} \cdot\big(3^{2}\big)^{44}+2^{208}:\Big[2\cdot\big(2^{2}\big)^{103}\Big]-5\cdot 9^{22\cdot2}

\bf c=3^{90}-2^{2} \cdot 3^{2\cdot44}+2^{208}:\Big(2\cdot2^{2\cdot103}\Big)-5\cdot 9^{44}

\bf c=3^{90}-2^{2} \cdot 3^{88}+2^{208}:\Big(2\cdot2^{206}\Big)-5\cdot \big(3^{2}\big)^{44}

\bf c=3^{90}-2^{2} \cdot 3^{88}+2^{208}:2^{206+1}-5\cdot 3^{2\cdot44}

\bf c=3^{90}-4\cdot 3^{88}+2^{208}:2^{207}-5\cdot 3^{88}

\bf c=3^{90}-4\cdot 3^{88}+2^{208-207}-5\cdot 3^{88}

\bf c=3^{90}-4\cdot 3^{88}+2^{1}-5\cdot 3^{88}

\bf c=3^{90}-9\cdot 3^{88}+2.

\bf c=3^{90}-3^{2}\cdot 3^{88}+2

\bf c=3^{90}-3^{2+88}+2

\bf c=3^{90}-3^{90}+2

\pink{\underline{~\bf c=2~}}

==pav38==

Alte întrebări interesante