Se considera matricea A=(2 -2 1 -1).... a)calculati det A
b) determinati numerele reale p pentru care A•A=pA
c) determinati matricele B=(0 b b o) , stiind ca det de (A+B)=0 unde b este un numar real
Răspunsuri la întrebare
[tex]\displaystyle b).A \cdot A=pA \\ \\ A \cdot A= \left(\begin{array}{ccc}2&-2\\1&-1\\\end{array}\right) \cdot \left(\begin{array}{ccc}2&-2\\1&-1\\\end{array}\right) = \\ \\ = \left(\begin{array}{ccc}2 \cdot 2+(-2) \cdot 1&2 \cdot (-2)+(-2) \cdot (-1)\\1 \cdot 2+(-1) \cdot 1&1 \cdot (-2)+(-1) \cdot (-1)\\\end{array}\right)= \left(\begin{array}{ccc}2&-2\\1&-1\\\end{array}\right) \Rightarrow \\ \\ \Rightarrow A \cdot A= \left(\begin{array}{ccc}2&-2\\1&-1\\\end{array}\right) [/tex]
[tex]\displaystyle pA=p \cdot \left(\begin{array}{ccc}2&-2\\1&-1\\\end{array}\right) = \left(\begin{array}{ccc}2p&-2p\\p&-p\\\end{array}\right) \\ \\ A \cdot A=pA \Rightarrow \left(\begin{array}{ccc}2&-2\\1&-1\\\end{array}\right) = \left(\begin{array}{ccc}2p&-2p\\p&-p\\\end{array}\right) \Rightarrow \\ \\ \Rightarrow 2=2p \Rightarrow p= \frac{2}{2} \Rightarrow p=1[/tex]