Matematică, întrebare adresată de cocacolarien, 9 ani în urmă

Sper sa se inteleaga, dau si mai multe puncte, 40 maxim! Ajutorr

Doar testele!

Anexe:

Răspunsuri la întrebare

Răspuns de Utilizator anonim
2

[tex]\displaystyle\mathtt{TESTUL~1}\\\\\mathtt{1.~~A=\left(\begin{array}{ccc}\mathtt2&\mathtt3\\\mathtt3&\mathtt{-2}\end{array}\right),~B=\left(\begin{array}{ccc}\mathtt4&\mathtt{-6}\\\mathtt6&\mathtt{-4}\end{array}\right)}\\ \\ \mathtt{a)~~S=a_{11}+2a_{21}-3b_{12}+b_{22}}\\ \\ \mathtt{a_{11}=2,~a_{21}=3,~b_{12}=-6,~b_{22}=-4}\\ \\ \mathtt{S=2+2\cdot3-3\cdot(-6)+(-4)}\\ \\ \mathtt{S=2+6+18-4}\\ \\ \mathtt{S=22}\\ \\ \mathtt{b)~~b_{11}=4,~b_{22}=-4}\\ \\ \mathtt{Tr(A)=2+(-2)=2-2=0}[/tex]

[tex]\displaystyle \mathtt{c)~~xA=B,~x=?}\\ \\ \mathtt{x\left(\begin{array}{ccc}\mathtt2&\mathtt3\\\mathtt3&\mathtt{-2}\end{array}\right)=\left(\begin{array}{ccc}\mathtt4&\mathtt{-6}\\\mathtt6&\mathtt{-4}\end{array}\right)\Rightarrow \left(\begin{array}{ccc}\mathtt{2x}&\mathtt{3x}\\\mathtt{3x}&\mathtt{-2x}\end{array}\right)=\left(\begin{array}{ccc}\mathtt4&\mathtt{-6}\\\mathtt6&\mathtt{-4}\end{array}\right)} \\ \\ \mathtt{Nu~sunt~solu\c{t}ii}[/tex]

[tex]\displaystyle \mathtt{2.~~2\left(\begin{array}{ccc}\mathtt3&\mathtt x\\\mathtt x&\mathtt y\end{array}\right)+y\left(\begin{array}{ccc}\mathtt2&\mathtt1\\\mathtt1&\mathtt0\end{array}\right)=\left(\begin{array}{ccc}\mathtt8&\mathtt3\\\mathtt3&\mathtt2\end{array}\right)}[/tex]

[tex]\displaystyle \mathtt{\left(\begin{array}{ccc}\mathtt6&\mathtt{2x}\\\mathtt{2x}&\mathtt{2y}\end{array}\right)+\left(\begin{array}{ccc}\mathtt{2y}&\mathtt y\\\mathtt y&\mathtt0\end{array}\right)=\left(\begin{array}{ccc}\mathtt8&\mathtt3\\\mathtt3&\mathtt2\end{array}\right)}[/tex]

\displaystyle\mathtt{\left(\begin{array}{ccc}\mathtt{6+2y}&\mathtt{2x+y}\\\mathtt{2x+y}&\mathtt{2y}\end{array}\right)=\left(\begin{array}{ccc}\mathtt8&\mathtt3\\\mathtt3&\mathtt2\end{array}\right)}

[tex]\displaystyle \mathtt{ \left\{\begin{array}{ccc}\mathtt{6+2y=8\Rightarrow2y=8-6\Rightarrow 2y=2\Rightarrow y=1}\\\mathtt{2x+y=3\Rightarrow 2x+1=3\Rightarrow 2x=3-1\Rightarrow 2x=2\Rightarrow x=1}\\\mathtt{2x+y=3\Rightarrow 2\cdot1+y=3\Rightarrow2+y=3\Rightarrow y=3-2\Rightarrow y=1}\\\mathtt{2y=2\Rightarrow y=1}\end{array}\right}\\ \\ \\ \mathtt{x=1,~y=1}[/tex]

[tex]\displaystyle \mathtt{3.~~A= \left(\begin{array}{ccc}\mathtt2&\mathtt{-1}&\mathtt1\\\mathtt3&\mathtt0&\mathtt1\end{array}\right),~B=\left(\begin{array}{ccc}\mathtt1&\mathtt2\\\mathtt0&\mathtt3\end{array}\right)}\\ \\ \mathtt{a)~~2\cdot BA=?~~~~~~~~~B^2=?}[/tex]

[tex]\displaystyle \mathtt{BA=\left(\begin{array}{ccc}\mathtt1&\mathtt2\\\mathtt0&\mathtt3\end{array}\right)\left(\begin{array}{ccc}\mathtt2&\mathtt{-1}&\mathtt1\\\mathtt3&\mathtt0&\mathtt1\end{array}\right)=}\\ \\ \mathtt{=\left(\begin{array}{ccc}\mathtt{1\cdot2+2\cdot3}&\mathtt{1\cdot(-1)+2\cdot0}&\mathtt{1\cdot1+2\cdot1}\\\mathtt{0\cdot2+3\cdot3}&\mathtt{0\cdot(-1)+3\cdot0}&\mathtt{0\cdot1+3\cdot1}\end{array}\right)=}[/tex]

[tex]\displaystyle \mathtt{=\left(\begin{array}{ccc}\mathtt{2+6}&\mathtt{-1+0}&\mathtt{1+2}\\\mathtt{0+9}&\mathtt{0+0}&\mathtt{0+3}\end{array}\right)=\left(\begin{array}{ccc}\mathtt8&\mathtt{-1}&\mathtt3\\\mathtt9&\mathtt0&\mathtt3\end{array}\right)}[/tex]

[tex]\displaystyle \mathtt{2\cdot BA=2\left(\begin{array}{ccc}\mathtt8&\mathtt{-1}&\mathtt3\\\mathtt9&\mathtt0&\mathtt3\end{array}\right)=\left(\begin{array}{ccc}\mathtt{2\cdot8}&\mathtt{2\cdot(-1)}&\mathtt{2\cdot3}\\\mathtt{2\cdot9}&\mathtt{2\cdot0}&\mathtt{2\cdot 3}\end{array}\right)=}\\ \\ \mathtt{=\left(\begin{array}{ccc}\mathtt{16}&\mathtt{-2}&\mathtt6\\\mathtt{18}&\mathtt0&\mathtt6\end{array}\right)}[/tex]

\displaystyle \mathtt{B^2=B\cdot B=\left(\begin{array}{ccc}\mathtt1&\mathtt2\\\mathtt0&\mathtt3\end{array}\right)\left(\begin{array}{ccc}\mathtt1&\mathtt2\\\mathtt0&\mathtt3\end{array}\right)=\left(\begin{array}{ccc}\mathtt{1\cdot1+2\cdot0}&\mathtt{1\cdot2+2\cdot3}\\\mathtt{0\cdot1+3\cdot0}&\mathtt{0\cdot2+3\cdot3}\end{array}\right)=}

[tex]\displaystyle \mathtt{=\left(\begin{array}{ccc}\mathtt{1+0}&\mathtt{2+6}\\\mathtt{0+0}&\mathtt{0+9}\end{array}\right)=\left(\begin{array}{ccc}\mathtt1&\mathtt8\\\mathtt0&\mathtt9\end{array}\right)}[/tex]

[tex]\displaystyle \mathtt{b)~~^tA\cdot B=?}\\ \\ \mathtt{A=\left(\begin{array}{ccc}\mathtt2&\mathtt{-1}&\mathtt1\\\mathtt3&\mathtt0&\mathtt1\end{array}\right)\Rightarrow ^tA=\left(\begin{array}{ccc}\mathtt2&\mathtt3\\\mathtt{-1}&\mathtt0\\\mathtt1&\mathtt1\end{array}\right)}[/tex]

[tex]\displaystyle \mathtt{^tA\cdot B=\left(\begin{array}{ccc}\mathtt2&\mathtt3\\\mathtt{-1}&\mathtt0\\\mathtt1&\mathtt1\end{array}\right)\left(\begin{array}{ccc}\mathtt1&\mathtt2\\\mathtt0&\mathtt3\end{array}\right)=\left(\begin{array}{ccc}\mathtt{2\cdot1+3\cdot0}&\mathtt{2\cdot2+3\cdot3}\\\mathtt{-1\cdot1+0\cdot0}&\mathtt{-1\cdot2+0\cdot3}\\\mathtt{1\cdot1+1\cdot0}&\mathtt{1\cdot2+1\cdot3}\end{array}\right)=}[/tex]

[tex]\displaystyle \mathtt{=\left(\begin{array}{ccc}\mathtt{2+0}&\mathtt{4+9}\\\mathtt{-1+0}&\mathtt{-2+0}\\\mathtt{1+0}&\mathtt{2+3}\end{array}\right)=\left(\begin{array}{ccc}\mathtt2&\mathtt{13}\\\mathtt{-1}&\mathtt{-2}\\\mathtt1&\mathtt5\end{array}\right)}[/tex]

Anexe:
Alte întrebări interesante