Matematică, întrebare adresată de Beatrix, 9 ani în urmă

 \int\limits {\frac{x}{ x^{4}+ 9 } \, dx ?

Răspunsuri la întrebare

Răspuns de zindrag
0
facem schimbarea de variabila y=x

zindrag: si obtinem 1/2*1/3 arctg x/3 +C
zindrag: raportati greseala. am apasat din greseala tasta de Trimite raspunsul
Beatrix: Ce ii gresit?
zindrag: Am vrut sa apas pe butonul care deseneaza integrale si am apasat pe Trimite raspunsul. Si uite ce a iesit!
Beatrix: aaa
zindrag: :) Pana la urma ai inteles cum se face?
Beatrix: Cat de cat ... mai am vreo 6 si nu le inteleg :))
zindrag: sa le vedem
zindrag: nu garantez ca le stiu face, dar ma stradui.
Beatrix: Am pus o intrebare cu exercitiile :D ... Multumesc de ajutor :3
Răspuns de alesyo
1
 \int\limits { \frac{x}{(x^2)^2+9} } \, dx

Notam [tex]x^2=t (x^2)`dx=t`dt 2xdx=dt [/tex]
xdx= \frac{dt}{2}


 \int\limits { \frac{ \frac{dt}{2} }{t^2+9} } \, dx = \int\limits  { \frac{dt}{2}* \frac{1}{t^2+9}  } \, dx=  \frac{1}{2} \int\limits  { \frac{1}{t^2+9} } \, dx  =  \frac{1}{2}  \int\limits { \frac{1}{t^2+3^2} } \, dx =[tex] \frac{1}{2} * \frac{1}{3} arctg \frac{t}{3}+c= \frac{1}{6}arctg  \frac{x^2}{3} +C [/tex]


Alte întrebări interesante