Matematică, întrebare adresată de robitzika, 9 ani în urmă

Urgent!! Dau coroana!!!
Numerele reale x si y verifica 2^x=5 si 5^y=2 . Calculati xy.

Răspunsuri la întrebare

Răspuns de Rayzen
6
\left\{ \begin{array}{c} 2^x = 5 \\ 5^y = 2 \end{array} \right \Rightarrow \left\{ \begin{array}{c} x = log_\big25\\ y = log_\big52 \end{array} \right \Rightarrow \left\{ \begin{array}{c} x = log_\big25\\ y = \dfrac{log_\big22}{log_\big25} \end{array} \right \Rightarrow \left\{ \begin{array}{c} x = log_\big25\\ y = \dfrac{1}{log_\big25} \end{array} \right \Rightarrow
 \Rightarrow x\cdot y = log_\big25\cdot\dfrac{1}{log_\big25} \Rightarrow x\cdot y = \dfrac{log_\big25}{log_\big25}\Rightarrow \boxed{ x\cdot y = 1}

$ \ $\Big(  M-am folosit de formula de schimbare a bazei: log_\big{a}b= \dfrac{log_\big{c}b}{log_\big{c}a}$ $ \Big)

Rayzen: Robitzika, trebuia sa astepti ca Steffan12 sa modifice raspunsul fiindca nu i se generase bine textul. poate raspunsul lui este mai bun.
robitzika: tu ai raspuns primul e ok...am inteles mai bine cum ai explicat
Răspuns de Utilizator anonim
2

[tex]\it 2^x =5 \ \ \ \ \ (1) \\\;\\ 5^y=2 \ \ \ \ \ (2) [/tex]


\it 2^x=5 \Rightarrow (2^x)^y=5^y \stackrel{(2)}{\Longrightarrow} 2^{xy} = 2 \Rightarrow xy = 1


Alte întrebări interesante