Matematică, întrebare adresată de valigheorghe78, 9 ani în urmă

Va rog ajutatima
Dau coronita

Anexe:

Răspunsuri la întrebare

Răspuns de samsunggenius200
1
1. a) (x+4)^2+(x−2)(x+2)(x−4)^2=x^2+8x+16+(x)(x)+(x)(2)+(−2)(x)+(−2)(2)+x2+8x+−16=x^2+8x+16+x^2+2x+−2x+−4+−x^2+8x+−16

b) (√3−2+1)^2−(3−2)^2+(3−2)(3+√2)=0.386881

c) (3^2−1)(3^2+1)(9^2+1)(81^2+1)−81^4=(9−1)(3^2+1)(9^2+1)(81^2+1)−81^4=8(3^2+1)(9^2+1)(81^2+1)−81^4=8(9+1)(9^2+1)(81^2+1)−81^4=(8)(10)(9^2+1)(81^2+1)−81^4=80(9^2+1)(81^2+1)−81^4=80(81+1)(81^2+1)−81^4=(80)(82)(81^2+1)−81^4=6560(81^2+1)−81^4=6560(6561+1)−81^4=(6560)(6562)−81^4=43046720−81^4=43046720−43046721=−1

d)√(23−2)^27−210+8+2√15=NaN

2. (x−y+z)^2+(x+y−z)^2+(−x+y+z)^2=x^2+−2xy+2xz+y^2+−2yz+z^2+x^2+2xy+−2xz+y^2+−2yz+z^2+x^2+−2xy+−2xz+y^2+2yz+z^2=(x^2+x^2+x^2)+(2xy+2xy+2xy)+(2xz+2xz+2xz)+(y^2+y^2+y^2)+(2yz+2yz+2yz)+(z^2+z^2+z^2)=3x^2+−2xy+−2xz+3y^2+−2yz+3z^2

3. a) x^36x^2+9x=x(x−3)(x−3)

b) x^24y^2+4y−1=x^2−4y^2+4y−1

c)x^35x^23x+15=(x−5)(x^2−3)

d)(x^2+6x)(x^2+6x+10)+25=(x^2)(x^2)+(x^2)(6x)+(x^2)(10)+(6x)(x^2)+(6x)(6x)+(6x)(10)+25=x^4+6x^3+10x^2+6x^3+36x^2+60x+25
Alte întrebări interesante