Matematică, întrebare adresată de AncaXRX, 9 ani în urmă

Va rog!Cine ma ajuta?

Anexe:

Răspunsuri la întrebare

Răspuns de tcostel
4

 \displaystyle\\<br />\text{Avem suma:}\\\\<br />C_{2018}^0-C_{2018}^2+C_{2018}^4-C_{2018}^6+...+C_{2018}^{2012}-C_{2018}^{2014}+C_{2018}^{2016}-C_{2018}^{2018}\\\\<br />\text{Calculam numarul de termeni:}\\\\<br />n=\frac{2018-0}{2}+1=\frac{2018}{2}+1=1009+1=1010~\text{termeni.}\\\\<br />\Longrightarrow~\text{Avem un numar par de termeni.}\\\\<br />\text{Folosim formula:}~~~C_n^k = C_n^{n-k} \\\\<br />C_{2018}^{2018}=C_{2018}^{0}\\<br />C_{2018}^{2016}=C_{2018}^{2}\\<br />C_{2018}^{2014}=C_{2018}^{4}\\<br />\text{s.a.m.d.}<br />


Observam ca primul termen si ultimul termen sunt egali in valoare absoluta dar sunt de semne contrare.

La fel al doilea cu penultimul, al 3-lea cu al 3-lea de la coada si tot asa putem grupa cate 2 toti termenii deoarece sunt un numar par de termeni.



 \displaystyle\\<br />C_{2018}^0-C_{2018}^2+C_{2018}^4-C_{2018}^6+...+C_{2018}^{2012}-C_{2018}^{2014}+C_{2018}^{2016}-C_{2018}^{2018}\\\\<br />C_{2018}^0-C_{2018}^{2018} = C_{2018}^0-C_{2018}^0=0\\<br />-C_{2018}^2+C_{2018}^{2016}=-C_{2018}^2+C_{2018}^2=0\\<br />C_{2018}^4-C_{2018}^{2014} = C_{2018}^4-C_{2018}^4=0\\<br />-C_{2018}^6+C_{2018}^{2012}=-C_{2018}^6+C_{2018}^6=0\\<br />\text{Si asa mai departe.}\\<br />C_{2018}^0-C_{2018}^2+C_{2018}^4-C_{2018}^6+...+C_{2018}^{2012}-C_{2018}^{2014}+C_{2018}^{2016}-C_{2018}^{2018}=\\<br />=0+0+0+...+0=0




Alte întrebări interesante