vom spune că un număr natural este adunat dacă la scrierea sa în baza 10 toate cifrele numărului au vecini comun determinați câte numere adunate de 4 cifre există?
Răspunsuri la întrebare
Răspuns:
114 numere adunate
Explicație pas cu pas:
Cifrele unui număr au vecin comun dacă cifrele sunt identice, sau dacă succesorul unei cifre este predecesorul altei cifre.
I. Dacă cifrele au același succesor și același predecesor avem:
1111, 2222, 3333, 4444, ..., 9999, 9 numere
II. Dacă succesorul unei cifre=predecesorul altei cifre=> diferența dintre oricare două cifre ale numărului este 0 sau 2.
Cu cifrele 0 și 2 sunt 7 numere, (au vecin comun pe 1)
2000, 2002, 2020, 2200, 2022, 2202, 2220.
Cu cifrele 1 și 3 sunt 14 numere, (au vecin comun pe 2)
1113, 1131, 1311, 3111, (3 cifre de 1 , o cifră de 3)
1133, 1313, 1331, 3113, 3131, 3311, (2 cifre de 1, 2 cifre de 3)
1333, 3133, 3313, 3331, (o cifră de 1, 3 cifre de 3)
Cu cifre identice am scris deja la I.
Cu cifrele 2 și 4 sunt 14 numere, (au vecin comun pe 3).
(se pot scrie după modelul de la cifrele 1 și 3)
Cu cifrele 3 și 5 sunt 14 numere, (au vecin comun pe 4).
Cu cifrele 4 și 6 sunt 14 numere, (au vecin comun pe 5).
Cu cifrele 5 și 7 sunt 14 numere, (au vecin comun pe 6).
Cu cifrele 6 și 8 sunt 14 numere, (au vecin comun pe 7).
Cu cifrele 7 și 9 sunt 14 numere, (au vecin comun pe 8).
=>7+7*14=105 numere
În total: 9+105=114 numere adunate
9 numere cu cifre identice.
Cu 0 și 2, 7 numere.
Cu 1 și 3, 14 numere
Cu 2 și 4, 14 numere
...............
Cu 7 și 9, 14 numere.
În total: 9+7+7*14=114 numere.
Cam asta ar fi rezolvare pe scurt.
În rezolvarea de sus am scris și explicații.
Mulțumesc că m-ai ajutat să-mi corectez rezolvarea.
Succes!
De la primul la celelalte sunt 11, apoi 10, apoi 9,...., 1
Deci, 1+2+3+....+11=(1+11)*11/2=6*11=66
1+2+3+...+n=n(n+1)/2
Sper că acum înțelegi mai bine.