Matematică, întrebare adresată de RALUCA22222, 9 ani în urmă

1.
Se consideră funcțiile f: R ----> R, f(x)=2x-3 și g: R---->R, g(x)=f(x-3)
a.) Determinați lege de corespondență a functiei g.

2.
Fie funcția liniară f:R---->R,care îndeplinește condiția f(x-1)= -2x+6
a.) Determinați funcția

3. Se consideră funcțiile f:R---> R,f(x)=3x-1 si g:R-----> R, g(x)=x+3.
a) determinați coordonatele punctului de intersecție a celor două grafice.

Răspunsuri la întrebare

Răspuns de antimcoolp6zall
6
La 1: f(x-3)=2(x-3)-3=2x-9. x ul de inlocuit in ecuatie este cel din paranteza, efectiv il inlocuiesti. o sa ai g(x)=2x-9. Lege de corespondenta inseamna sa o scrii pe una in functie de cealalta. Daca adun la  g(x) 6, o sa am ca
g(x)+6=2x-3 care este f(x), deci f(x)=g(x)+6

La 2: daca ai un coeficient in fata la x, te gandesti ca era ceva paranteza inainte, si se inmultea cu 2. Asta inseamna ca functia ta era ceva de genul : 
f(x-1)=-2(x-1)+altceva. Deci o sa am : -2x+2+altceva. Ca sa mi dea -2x+6 trebuie sa adun 4, deci 4 este altceva ul ala. 
Astfel functia initiala e : f(x)=-2x+4.


la 3: ca sa afli coordonata lui x, efectiv egalezi functiile : 3x-1=x+3 si o sa iti dea x=2. Asta e coordonata x. Acum ca sa afli coordonata y, inlocuiesti x ul in oricare dintre cele doua functii. si o sa iti dea y=5 . Oriunde ai inlocui, trebuie sa ai aceeasi valoare pentru y, asa te poti verifica. Daca nu iti dau egale, ai gresit undeva. Deci punctul de intersectie este A(2,5)

Alte întrebări interesante