1. [tex]f(x)=x^2e^x
[/tex]
Cum se rezolva? Cu explicatii daca se poate! Mersii
Utilizator anonim:
Cerinta : Precizeaza domeniul maxim de definitie D al functiei f:D⊆R⇵ - R si determina ecuatiile asimptotelor oblice (orizontale ) atunci cand acestea exista.
Răspunsuri la întrebare
Răspuns de
4
este definita pe R ptca este un produsde 2 functiidefinite per R, o functiede grad 2 si una exponentiala
D=R
asimptota la +∞
orizontala nu are pt ca tinde la infinit, ca produsde 2 functiice tind la infinit
oblica nu are pt ca lim cand x->∞din (f(x)/x) =lim din xe^x= ∞*∞=∞
deci la +∞nu are orizontala sau oblica
la -∞..are..orizontala dreapta y=o (axa x-lor, Ox)
demonstratie
lim cand x->-∞ din (x²e^x)= lim cand x->∞ din ((-x)²e^(-x))=
=lim cand x->∞din (x²/e^(x))= L'Hospital=lim cand x->∞din (2x/e^(x))=
inxca o data l'Hospital=lim cand x->∞din (2/e^(x))=2/∞=0
la modul general la ∞o exponential cu baza >1 tinde airepede catre infinitdecat o polinomiala (para)
am aplicat regula lui l'Hospital, care spune ca, in anumite conditii,
lim cand x->∞( f/g)= lim cand x->∞ din (f'/g')
si propietatea ca daca exista si este finita limita
lim cand x->(f(x))=a
atunci functia are ca asimptota orizontala dreapta y=a
D=R
asimptota la +∞
orizontala nu are pt ca tinde la infinit, ca produsde 2 functiice tind la infinit
oblica nu are pt ca lim cand x->∞din (f(x)/x) =lim din xe^x= ∞*∞=∞
deci la +∞nu are orizontala sau oblica
la -∞..are..orizontala dreapta y=o (axa x-lor, Ox)
demonstratie
lim cand x->-∞ din (x²e^x)= lim cand x->∞ din ((-x)²e^(-x))=
=lim cand x->∞din (x²/e^(x))= L'Hospital=lim cand x->∞din (2x/e^(x))=
inxca o data l'Hospital=lim cand x->∞din (2/e^(x))=2/∞=0
la modul general la ∞o exponential cu baza >1 tinde airepede catre infinitdecat o polinomiala (para)
am aplicat regula lui l'Hospital, care spune ca, in anumite conditii,
lim cand x->∞( f/g)= lim cand x->∞ din (f'/g')
si propietatea ca daca exista si este finita limita
lim cand x->(f(x))=a
atunci functia are ca asimptota orizontala dreapta y=a
Alte întrebări interesante
Matematică,
8 ani în urmă
Limba rusă,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă