4.In AABC, m(A), m(B), m(C) sunt direct proportionale respectiv cu 3, 2 şi 1.
a) Aflaţi măsurile unghiurilor triunghiului;
b) Dacă BC =
12 cm şi M este mijlocul lui BC, aflați lungimea medianei AM.
Răspunsuri la întrebare
Răspuns de
0
Răspuns:
a) A = 90°; B = 60°; C = 30°
b) AM = 6 cm
Explicație pas cu pas:
Fiind unghiuri ale unui triunghi, există relația
A + B + C = 180 (1)
Relația de proporționalitate se scrie astfel:
unde k este o constantă pe care o vom calcula imediat.
Din relația de proporționalitate rezultă:
A = 3k
B = 2k
C = k
În relația (1) înlocuim pe A, B și C:
3k + 2k + k = 180
6k = 180 ⇒ k = 180:6 ⇒ k = 30
Cunoscând pe k, determinăm cele 3 unghiuri:
A = 3×30 ⇒ A = 90°
B = 2×30 ⇒ B = 60°
C = 30°
b)
Cum A = 90° ⇒ ABC este triunghi dreptunghic și BC este cateta.
Teorema medianei: Mediana dusă pe ipotenuză este egală cu jumătate din ipotenuză.
AM = BC:2 ⇒ AM = 6 cm
Alte întrebări interesante
Limba română,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă