Matematică, întrebare adresată de rodifilip, 9 ani în urmă

(5^n+3+5^n+2+5^n+1):(5^n+2+5^n+1+5^n)=?

Răspunsuri la întrebare

Răspuns de carmentofan
3

Răspuns:

Explicație pas cu pas:

5^n+3+5^n+2+5^n+1 = 5^n+1 (25 + 5 + 1) = 31*5^n+1

5^n+2+5^n+1+5^n = 5^n (25 + 5 + 1) = 31*5^n

31*5^n+1 / 31*5^n = 5

Răspuns de ModFriendly
4

=\frac{5^{n+3}+5^{n+2}+5^{n+1}}{5^{n+2}+5^{n+1}+5^n}=\\ \\ =\frac{5^n(5^3+5^2+5)}{5^n(5^2+5+1)}=\\ \\ =\frac{125+25+5}{25+5+1}=\\ \\ =\frac{155}{31}=5

Alte întrebări interesante