Matematică, întrebare adresată de maxzavtoni, 8 ani în urmă

am nevoie urgent, problema 5 și 6 . DAU COROANĂ PLS... ​

Anexe:

iulinas2003: 5) conform teoremei lui Thales:BE/BA=DE/CA; 9/AB=6/10;AB=90/6=15
iulinas2003: DE paralel cu CA

Răspunsuri la întrebare

Răspuns de adresaana
0

Problemele par a fi de la lecția despre asemănarea triunghiurilor.

Două triunghiuri sunt asemenea dacă au unghiurile respectiv congruente sau laturile proporționale.

Și reciproca este adevărată: dându-se două triunghiuri asemenea, ele au unghiurile respectiv congruente și laturile proporționale.

5. analizăm ΔBAC și ΔBED:

∡BAC ≡ ∡BED

∡BCA ≡ ∡BDE

∡CBA ≡ ∡DBE (unghi comun)

⇒  ΔBAC ~ ΔBED

⇒  laturile sunt proporționale:

DE / AC = BE / AB = BD / BC

folosim datele problemei și aflăm AB:

6 / 10 = 9 / AB

⇒  AB = 9 · 10 / 6 = 15

AB = 15 cm

6.

În primul rând, numerele scrise pe desen nu corespund cu numerele din enunț. Voi folosi datele din enunțul problemei, nu cele de pe figură.

În al doilea rând, presupunem că stâlpul (BA) și Mihai (DE) stau vertical, sau măcar paralel. Ce trebuie să aflăm este lungimea segmentului CE.

vom folosi teorema fundamentală a asemănării:

O paralelă dusă la una din laturile unui triunghi determină împreună cu segmentele formate pe laturile triunghiului dat (sau pe prelungirile acestora) un triunghi asemenea cu cel dat.

BA║DE  ⇒  ΔBAC ~ ΔDEC

⇒  laturile sunt proporționale:

DE / AB = EC / AC

AC = EC + AE

folosim datele problemei și aflăm EC:

1,32 / 4 = EC / (EC + 5,36)

în orice proporție știm că produsul mezilor = produsul extremilor

4 · EC = 1,32 · (EC + 5,36)

4 · EC - 1,32 · EC = 1,32 · 5,36

2,68 · EC = 7,0752

EC = 7,0752 / 2,68

EC = 2,64

umbra lui Mihai are 2,64 m

Răspuns de iulinas2003
0

Răspuns:

Explicație pas cu pas:

5) conform teoremei lui Thales:BE/BA=DE/CA; 9/AB=6/10;AB=90/6=15

DE paralel cu CA

Alte întrebări interesante