Matematică, întrebare adresată de elyelena1112, 8 ani în urmă

Calculați suma S=1+2+3+...+99​

Răspunsuri la întrebare

Răspuns de EagleEyes
11

S = 1 + 2 + 3 + ... + 99

Suma lui Gauss: 1 + 2 + 3 + 4 + … + n = n × ( n + 1 ) : 2

1 + 2 + 3 + ... + 99 = 99 × ( 99 + 1 ) : 2

= 99 × 100 : 2 = 99 × 50 = 4950

Răspuns de Utilizator anonim
4

Răspuns:

Explicație pas cu pas:

S = 1 + 2 + 3 + ... + 99

____________________

Atenție !

Suma lui Gauss :

1 + 2 + 3 + ... + n = [ n × ( n + 1 ) ] : 2

___________________

S = ( 99 × 100 ) : 2

S = 99 × 50

◇ S = 4950

sau ...

S = 1 + 2 + 3 + ... + 99

S = 99 + 98 + 97 + ... + 1

_____________________ ( + )

2S = 100 + 100 + 100 + ... + 100 | : 2

S = 50 + 50 + 50 + ... + 50

99 - 1 + 1 = 99 termeni

S = 50 × 99

◇ S = 4950

Alte întrebări interesante