Matematică, întrebare adresată de Afi1, 9 ani în urmă

Determinati numarul ab, a>b>0 stiind ca media aritmetica a numerelor ab si ba este egală cu
a) 22
b)33
c)44

Răspunsuri la întrebare

Răspuns de Chris02Junior
1
ab=ba datorita proprietatii de comutativitate a inmultirii.Astfel avem
(ab+ba):2=2ab:2=ab si in plus trebuie sa avem a>b
a) ab=22, care se verifica pentru  a=22, b=1 sau a=11, b=2
b) ab=33,  .......................................a=33, b=1
c) ab=44, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a=44, b=1 sau a=22, b=2 sau a=11, b=4

Răspuns de albatran
2
ab+ba numere=10a+b+10b+a=11a+11b= 11(a+b)
  deci ab+ba numar = 2 * ma=


a)44⇒a+b=4 ⇒a=3, b=1, ab=31

b)66⇒a+b=6⇒a=5 , b=1;ab=51  sau a=4;b=2, ab=42

c)88⇒a+b=8⇒a=7;b=1;ab=71 sau a=6 b=2, ab=62 sau a=5 b=3, ab=53
Alte întrebări interesante