Dreptunghiul ABCD din figura alăturată reprezintă schița unei mese de biliard.Dimensiunile mesei sunt:AB=12 dm și BC=18 dm.
a)
Calculați aria dreptunghiului ABCD,exprimată în m².
b)
Determinați perimetrului ∆APB,unde P este mijlocul segmentului (CD).
c)
O bilă se află în punctul M,mijlocul laturii (AB).Un jucător lovește bila care atinge latura (BC) în punctul N și apoi ajunge în punctul D.Știind că unghiurile MNB și CND congruente,arătați că dreptele MN și ND sunt perpendiculare.
Trebuie cu rezolvare!!!
Anexe:
macks:
Acolo ii D,ii grasit dara ii P,asai?
Răspunsuri la întrebare
Răspuns de
65
a)
A=L*l;
A=AB*BC;
18dm=1,8m
12dm=1,2m
A=1,8*1,2=2,16(m²);
b)
Aici vei face tu desenul vei duce drepta de la A la P si dreapta de la B la P,si se va primi un triunghi isoscel cu AP= BP;
Deci:
MB=1/2*AB⇒MB=12/2=6(dm);
Ducem inaltimea PM care-i egala cu AD;
PM=AD=18dm;
DinΔPMB⇒T.P⇒PB²=18²+6²⇒PB²=324+36⇒PB²=360⇒PB=√360⇒PB=6√10(dm);
P=2*AP+AB⇒P=2*6√10+12⇒P=(12√10+12)dm.
c)
ΔBNM este asemenea cu ΔCND conform crieteriului (U.U.)
⇒MB/CP=BN/CN⇒6/12=BN/CN⇒⇒BN/CN=1/2⇒BN=CN·2BN=6CN=12⇒∡MND=
=90°⇒MN⊥ND;
Bafta!
A=L*l;
A=AB*BC;
18dm=1,8m
12dm=1,2m
A=1,8*1,2=2,16(m²);
b)
Aici vei face tu desenul vei duce drepta de la A la P si dreapta de la B la P,si se va primi un triunghi isoscel cu AP= BP;
Deci:
MB=1/2*AB⇒MB=12/2=6(dm);
Ducem inaltimea PM care-i egala cu AD;
PM=AD=18dm;
DinΔPMB⇒T.P⇒PB²=18²+6²⇒PB²=324+36⇒PB²=360⇒PB=√360⇒PB=6√10(dm);
P=2*AP+AB⇒P=2*6√10+12⇒P=(12√10+12)dm.
c)
ΔBNM este asemenea cu ΔCND conform crieteriului (U.U.)
⇒MB/CP=BN/CN⇒6/12=BN/CN⇒⇒BN/CN=1/2⇒BN=CN·2BN=6CN=12⇒∡MND=
=90°⇒MN⊥ND;
Bafta!
Răspuns de
21
1m=10dm
1m²=100dm²
Aabcd=AB*BC=12*18dm²=216dm²=2,16m²
aplic Pitagora inΔADP, unde DP=CD/2=AB/2= 6dm
AP²=AD²+DP²=18²+36=324+36=360
AP=6√10 dm
Dar AP=BP si deci Papb=6√10+6√10+12=12(1+√10)
ΔMNB si ΔNDC sunt asemenea si cf th. asemanarii
MB/DC (=1/2)=BN/NC deci NC=2BN adica BN=1/3 BC=1/3*18=6
aplic tg(BNM)=MB/NB=6/6=1⇒∡(BNM)=45°
suma ∡(BNM)+∡CND=90°⇒
∡MND=90°⇒MN⊥ND
1m²=100dm²
Aabcd=AB*BC=12*18dm²=216dm²=2,16m²
aplic Pitagora inΔADP, unde DP=CD/2=AB/2= 6dm
AP²=AD²+DP²=18²+36=324+36=360
AP=6√10 dm
Dar AP=BP si deci Papb=6√10+6√10+12=12(1+√10)
ΔMNB si ΔNDC sunt asemenea si cf th. asemanarii
MB/DC (=1/2)=BN/NC deci NC=2BN adica BN=1/3 BC=1/3*18=6
aplic tg(BNM)=MB/NB=6/6=1⇒∡(BNM)=45°
suma ∡(BNM)+∡CND=90°⇒
∡MND=90°⇒MN⊥ND
Alte întrebări interesante
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
9 ani în urmă
Chimie,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă