Matematică, întrebare adresată de dughisor, 8 ani în urmă

exercițiul 1 de la punctul A. g) pana la ultimul punct B. adică l) dacă ma poate ajuta cineva as aprecia enorm!!! macar la câteva dacă nu la toate!! dau coroana!! va rog

Anexe:

Răspunsuri la întrebare

Răspuns de ioanaenache81
1

Răspuns:

A

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16f) (2y+5)² = (2y)² + 2 × 2y × 5 + 5² = 4y² + 20y + 25

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16f) (2y+5)² = (2y)² + 2 × 2y × 5 + 5² = 4y² + 20y + 25g) (4c+5)² = (4c)² + 2 × 4c × 5 + 5² = 16c² + 40c + 25

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16f) (2y+5)² = (2y)² + 2 × 2y × 5 + 5² = 4y² + 20y + 25g) (4c+5)² = (4c)² + 2 × 4c × 5 + 5² = 16c² + 40c + 25h) (3b+1)² = (3b)² + 2 × 3b × 1 + 1² = 9b² + 6b + 1

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16f) (2y+5)² = (2y)² + 2 × 2y × 5 + 5² = 4y² + 20y + 25g) (4c+5)² = (4c)² + 2 × 4c × 5 + 5² = 16c² + 40c + 25h) (3b+1)² = (3b)² + 2 × 3b × 1 + 1² = 9b² + 6b + 1i) (a+4)² = a² + 2 × a × 4 + 4² = a² + 2a + 16

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16f) (2y+5)² = (2y)² + 2 × 2y × 5 + 5² = 4y² + 20y + 25g) (4c+5)² = (4c)² + 2 × 4c × 5 + 5² = 16c² + 40c + 25h) (3b+1)² = (3b)² + 2 × 3b × 1 + 1² = 9b² + 6b + 1i) (a+4)² = a² + 2 × a × 4 + 4² = a² + 2a + 16j) (3y+5)² = (3y)² + 2 × 3y × 5 + 5² = 9y² + 20y + 25

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16f) (2y+5)² = (2y)² + 2 × 2y × 5 + 5² = 4y² + 20y + 25g) (4c+5)² = (4c)² + 2 × 4c × 5 + 5² = 16c² + 40c + 25h) (3b+1)² = (3b)² + 2 × 3b × 1 + 1² = 9b² + 6b + 1i) (a+4)² = a² + 2 × a × 4 + 4² = a² + 2a + 16j) (3y+5)² = (3y)² + 2 × 3y × 5 + 5² = 9y² + 20y + 25k) (a+3b)² = a² + 2 × a × 3b + (3b)² = a² + 6ab + 9b

Aa) (x+1)² = x² + 2 × X × 1 + 1² = x² + 2x + 1b) (x+5)² = x² + 2 × X × 5 + 5² = x² + 10x + 25c) (2x+3)² = (2x)² + 2 × 2x × 3 + 3² = 4x² + 12x + 9d) (2a+1)² = (2a)² + 2 × 2a × 1 + 1² = 4a² + 4a + 1e) (3a+4)² = (3a)² + 2 × 3a × 4 + 4² = 9a² + 24a + 16f) (2y+5)² = (2y)² + 2 × 2y × 5 + 5² = 4y² + 20y + 25g) (4c+5)² = (4c)² + 2 × 4c × 5 + 5² = 16c² + 40c + 25h) (3b+1)² = (3b)² + 2 × 3b × 1 + 1² = 9b² + 6b + 1i) (a+4)² = a² + 2 × a × 4 + 4² = a² + 2a + 16j) (3y+5)² = (3y)² + 2 × 3y × 5 + 5² = 9y² + 20y + 25k) (a+3b)² = a² + 2 × a × 3b + (3b)² = a² + 6ab + 9bl) (x+3)² = x² + 2 × X × 3 + 3² = x² + 6x + 9

La supunctul B aplici a doua formula lăsată mai jos.

Explicație pas cu pas:

Folosim formulele de calcul prescurtat

Folosim formulele de calcul prescurtat1. (a+b)² = a² + 2×a×b + b²

Folosim formulele de calcul prescurtat1. (a+b)² = a² + 2×a×b + b²2. (a-b)² = a² - 2×a×b + b²

Folosim formulele de calcul prescurtat1. (a+b)² = a² + 2×a×b + b²2. (a-b)² = a² - 2×a×b + b²3. (a+b)(a-b) = a² - b²


dughisor: multumesc din inima!!
Alte întrebări interesante