Matematică, întrebare adresată de alexandramaria12, 9 ani în urmă

fie n un un nr natural astefel incat 13n+8 da restul 13 la impartirea cu 80,iar 8n +5 da restul 5la impartirea cu 50. determinati ultimele doua cifre ale lui n

Răspunsuri la întrebare

Răspuns de bunicaluiandrei
0
13n+8 = 80a+13      13n- 13 = 80a -8    13(n-1) = 8(10a -1)  ⇒(10a-1) divizibil cu 13; Uc(10a-1) 9 ⇒ 10a-1 = 13·3q = 39q   10a = 39q+1  Uc(q) =1 ⇒ ptr q=1 10a = 40 ⇒ a=4 ⇒ 13n =  320 +5 ⇒ n= 25  U2c(n) =2,5
ptr q=11 ⇒ 10a = 430  a=43  ⇒ 13n=3445  n= 265  U2c(n) =6,5
ptr, q=21 ⇒10a =820    a= 82 ⇒13n = 6565  n= 505  U2c(n) =0,5
ptr. q=31 ⇒10a =1210  a=121 ⇒ 13n = 9685  n=745  U2c(n) =4,5

8n+5 = 50b+5           8n = 50b  ⇒ 4n = 25b    n =25b/ 4 ⇒ b = multiplu de 4  (b = 4k)
⇒ n = 100k ⇒  U2cifre (n)  = 0,0
ceva nu-i in regula !!!!  nu este nici o concordanta intre rezultatele obtinte....

Alte întrebări interesante