Matematică, întrebare adresată de melisa754, 8 ani în urmă

Pe cercul C(O, r) se considera punctele P, M si Q, astfel incat M este mijlocul arcului PQ. Aratati ca OM perpendicular PQ.

Anexe:

Răspunsuri la întrebare

Răspuns de andyilye
6

Răspuns:

MO ⊥ PQ

Explicație pas cu pas:

M este mijlocul arcului PQ => m(arcPM) = m(arcMQ)

MO intersectează cercul în A

=> MA este diametru

MA ∩ PQ = {N}

\sphericalangle PNA = \frac{m(arcPA) + m(arcMQ)}{2} = \frac{m(arcPA) + m(arcPM)}{2} = \\  = \frac{m(arcAPM)}{2} = \frac{180 \degree}{2} = \bf 90 \degree

=> MA ⊥ PQ => MO ⊥ PQ

Anexe:
Alte întrebări interesante