Matematică, întrebare adresată de nicholas7948, 8 ani în urmă

Să se rezolve ecuația matricială X\left([tex]\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 1\end{array}\right)=\left(\begin{array}{lll}6 & 9 & 8 \\ 0 & 1 & 6\end{array}\right).[/tex]

Răspunsuri la întrebare

Răspuns de red12dog34
1

Răspuns:

Fie

A=\begin{pmatrix}1 & 2 & 3\\2 & 3 & 4\\3 & 4 & 1\end{pmatrix}, \ B=\begin{pmatrix}6 & 9 & 8\\0 & 1 & 6\end{pmatrix}

Atunci ecuația se scrie

X\cdot A=B\Rightarrow X=B\cdot A^{-1}

A^{-1}=\begin{pmatrix}-\frac{13}{4} & \frac{10}{4} & -\frac{1}{4}\\\frac{10}{4} & -\frac{8}{4} & \frac{2}{4}\\-\frac{1}{4} & \frac{2}{4} & -\frac{1}{4}\end{pmatrix}

Rezultă

X=\begin{pmatrix}1 & 1 & 1\\1 & 1 & -1\end{pmatrix}

Explicație pas cu pas:

Alte întrebări interesante